Evaluate
20n^{2}-2n-\frac{2}{5}
Expand
20n^{2}-2n-\frac{2}{5}
Share
Copied to clipboard
20n^{2}+5n\left(-\frac{4}{5}\right)+\frac{1}{2}\times 4n+\frac{1}{2}\left(-\frac{4}{5}\right)
Apply the distributive property by multiplying each term of 5n+\frac{1}{2} by each term of 4n-\frac{4}{5}.
20n^{2}-4n+\frac{1}{2}\times 4n+\frac{1}{2}\left(-\frac{4}{5}\right)
Cancel out 5 and 5.
20n^{2}-4n+\frac{4}{2}n+\frac{1}{2}\left(-\frac{4}{5}\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
20n^{2}-4n+2n+\frac{1}{2}\left(-\frac{4}{5}\right)
Divide 4 by 2 to get 2.
20n^{2}-2n+\frac{1}{2}\left(-\frac{4}{5}\right)
Combine -4n and 2n to get -2n.
20n^{2}-2n+\frac{1\left(-4\right)}{2\times 5}
Multiply \frac{1}{2} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
20n^{2}-2n+\frac{-4}{10}
Do the multiplications in the fraction \frac{1\left(-4\right)}{2\times 5}.
20n^{2}-2n-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
20n^{2}+5n\left(-\frac{4}{5}\right)+\frac{1}{2}\times 4n+\frac{1}{2}\left(-\frac{4}{5}\right)
Apply the distributive property by multiplying each term of 5n+\frac{1}{2} by each term of 4n-\frac{4}{5}.
20n^{2}-4n+\frac{1}{2}\times 4n+\frac{1}{2}\left(-\frac{4}{5}\right)
Cancel out 5 and 5.
20n^{2}-4n+\frac{4}{2}n+\frac{1}{2}\left(-\frac{4}{5}\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
20n^{2}-4n+2n+\frac{1}{2}\left(-\frac{4}{5}\right)
Divide 4 by 2 to get 2.
20n^{2}-2n+\frac{1}{2}\left(-\frac{4}{5}\right)
Combine -4n and 2n to get -2n.
20n^{2}-2n+\frac{1\left(-4\right)}{2\times 5}
Multiply \frac{1}{2} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
20n^{2}-2n+\frac{-4}{10}
Do the multiplications in the fraction \frac{1\left(-4\right)}{2\times 5}.
20n^{2}-2n-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}