Evaluate
4\left(4m-3\right)\left(m+1\right)
Expand
16m^{2}+4m-12
Share
Copied to clipboard
25m^{2}-20m+4-\left(3m-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5m-2\right)^{2}.
25m^{2}-20m+4-\left(9m^{2}-24m+16\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3m-4\right)^{2}.
25m^{2}-20m+4-9m^{2}+24m-16
To find the opposite of 9m^{2}-24m+16, find the opposite of each term.
16m^{2}-20m+4+24m-16
Combine 25m^{2} and -9m^{2} to get 16m^{2}.
16m^{2}+4m+4-16
Combine -20m and 24m to get 4m.
16m^{2}+4m-12
Subtract 16 from 4 to get -12.
25m^{2}-20m+4-\left(3m-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5m-2\right)^{2}.
25m^{2}-20m+4-\left(9m^{2}-24m+16\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3m-4\right)^{2}.
25m^{2}-20m+4-9m^{2}+24m-16
To find the opposite of 9m^{2}-24m+16, find the opposite of each term.
16m^{2}-20m+4+24m-16
Combine 25m^{2} and -9m^{2} to get 16m^{2}.
16m^{2}+4m+4-16
Combine -20m and 24m to get 4m.
16m^{2}+4m-12
Subtract 16 from 4 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}