Evaluate
-\frac{50}{b^{13}}
Differentiate w.r.t. b
\frac{650}{b^{14}}
Share
Copied to clipboard
5^{1}b^{8}b^{-12}\left(-10\right)^{1}b^{3}b^{-12}
Use the rules of exponents to simplify the expression.
5^{1}\left(-10\right)^{1}b^{8}b^{3}b^{-12}b^{-12}
Use the Commutative Property of Multiplication.
5^{1}\left(-10\right)^{1}b^{8+3}b^{-12-12}
To multiply powers of the same base, add their exponents.
5^{1}\left(-10\right)^{1}b^{11}b^{-12-12}
Add the exponents 8 and 3.
5^{1}\left(-10\right)^{1}b^{11}b^{-24}
Add the exponents -12 and -12.
-50b^{11}\times \frac{1}{b^{24}}
Multiply 5 times -10.
\frac{\mathrm{d}}{\mathrm{d}b}(5b^{-4}\left(-10\right)b^{3}b^{-12})
To multiply powers of the same base, add their exponents. Add 8 and -12 to get -4.
\frac{\mathrm{d}}{\mathrm{d}b}(5b^{-1}\left(-10\right)b^{-12})
To multiply powers of the same base, add their exponents. Add -4 and 3 to get -1.
\frac{\mathrm{d}}{\mathrm{d}b}(5b^{-13}\left(-10\right))
To multiply powers of the same base, add their exponents. Add -1 and -12 to get -13.
\frac{\mathrm{d}}{\mathrm{d}b}(-50b^{-13})
Multiply 5 and -10 to get -50.
-13\left(-50\right)b^{-13-1}
The derivative of ax^{n} is nax^{n-1}.
650b^{-13-1}
Multiply -13 times -50.
650b^{-14}
Subtract 1 from -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}