Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(12a-3a^{2}+8)
Combine 5a and 7a to get 12a.
-3a^{2}+12a+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-12±\sqrt{144-4\left(-3\right)\times 8}}{2\left(-3\right)}
Square 12.
a=\frac{-12±\sqrt{144+12\times 8}}{2\left(-3\right)}
Multiply -4 times -3.
a=\frac{-12±\sqrt{144+96}}{2\left(-3\right)}
Multiply 12 times 8.
a=\frac{-12±\sqrt{240}}{2\left(-3\right)}
Add 144 to 96.
a=\frac{-12±4\sqrt{15}}{2\left(-3\right)}
Take the square root of 240.
a=\frac{-12±4\sqrt{15}}{-6}
Multiply 2 times -3.
a=\frac{4\sqrt{15}-12}{-6}
Now solve the equation a=\frac{-12±4\sqrt{15}}{-6} when ± is plus. Add -12 to 4\sqrt{15}.
a=-\frac{2\sqrt{15}}{3}+2
Divide -12+4\sqrt{15} by -6.
a=\frac{-4\sqrt{15}-12}{-6}
Now solve the equation a=\frac{-12±4\sqrt{15}}{-6} when ± is minus. Subtract 4\sqrt{15} from -12.
a=\frac{2\sqrt{15}}{3}+2
Divide -12-4\sqrt{15} by -6.
-3a^{2}+12a+8=-3\left(a-\left(-\frac{2\sqrt{15}}{3}+2\right)\right)\left(a-\left(\frac{2\sqrt{15}}{3}+2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2-\frac{2\sqrt{15}}{3} for x_{1} and 2+\frac{2\sqrt{15}}{3} for x_{2}.
12a-3a^{2}+8
Combine 5a and 7a to get 12a.