Solve for a
a=\frac{5}{7}-b
Solve for b
b=\frac{5}{7}-a
Share
Copied to clipboard
5a+3b-5+2a-1+4b+6=5
To find the opposite of -2a+1, find the opposite of each term.
7a+3b-5-1+4b+6=5
Combine 5a and 2a to get 7a.
7a+3b-6+4b+6=5
Subtract 1 from -5 to get -6.
7a+7b-6+6=5
Combine 3b and 4b to get 7b.
7a+7b=5
Add -6 and 6 to get 0.
7a=5-7b
Subtract 7b from both sides.
\frac{7a}{7}=\frac{5-7b}{7}
Divide both sides by 7.
a=\frac{5-7b}{7}
Dividing by 7 undoes the multiplication by 7.
a=\frac{5}{7}-b
Divide 5-7b by 7.
5a+3b-5+2a-1+4b+6=5
To find the opposite of -2a+1, find the opposite of each term.
7a+3b-5-1+4b+6=5
Combine 5a and 2a to get 7a.
7a+3b-6+4b+6=5
Subtract 1 from -5 to get -6.
7a+7b-6+6=5
Combine 3b and 4b to get 7b.
7a+7b=5
Add -6 and 6 to get 0.
7b=5-7a
Subtract 7a from both sides.
\frac{7b}{7}=\frac{5-7a}{7}
Divide both sides by 7.
b=\frac{5-7a}{7}
Dividing by 7 undoes the multiplication by 7.
b=\frac{5}{7}-a
Divide 5-7a by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}