Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{5x+4y-1}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=\frac{1}{4}\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{4y-1}{5-a}\text{, }&a\neq 5\\x\in \mathrm{C}\text{, }&y=\frac{1}{4}\text{ and }a=5\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{5x+4y-1}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=\frac{1}{4}\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{4y-1}{5-a}\text{, }&a\neq 5\\x\in \mathrm{R}\text{, }&y=\frac{1}{4}\text{ and }a=5\end{matrix}\right.
Graph
Share
Copied to clipboard
5x-ax+4y-1=0
Use the distributive property to multiply 5-a by x.
-ax+4y-1=-5x
Subtract 5x from both sides. Anything subtracted from zero gives its negation.
-ax-1=-5x-4y
Subtract 4y from both sides.
-ax=-5x-4y+1
Add 1 to both sides.
\left(-x\right)a=1-4y-5x
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{1-4y-5x}{-x}
Divide both sides by -x.
a=\frac{1-4y-5x}{-x}
Dividing by -x undoes the multiplication by -x.
a=-\frac{1-4y-5x}{x}
Divide -5x-4y+1 by -x.
5x-ax+4y-1=0
Use the distributive property to multiply 5-a by x.
5x-ax-1=-4y
Subtract 4y from both sides. Anything subtracted from zero gives its negation.
5x-ax=-4y+1
Add 1 to both sides.
\left(5-a\right)x=-4y+1
Combine all terms containing x.
\left(5-a\right)x=1-4y
The equation is in standard form.
\frac{\left(5-a\right)x}{5-a}=\frac{1-4y}{5-a}
Divide both sides by 5-a.
x=\frac{1-4y}{5-a}
Dividing by 5-a undoes the multiplication by 5-a.
5x-ax+4y-1=0
Use the distributive property to multiply 5-a by x.
-ax+4y-1=-5x
Subtract 5x from both sides. Anything subtracted from zero gives its negation.
-ax-1=-5x-4y
Subtract 4y from both sides.
-ax=-5x-4y+1
Add 1 to both sides.
\left(-x\right)a=1-4y-5x
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{1-4y-5x}{-x}
Divide both sides by -x.
a=\frac{1-4y-5x}{-x}
Dividing by -x undoes the multiplication by -x.
a=-\frac{1-4y-5x}{x}
Divide -5x-4y+1 by -x.
5x-ax+4y-1=0
Use the distributive property to multiply 5-a by x.
5x-ax-1=-4y
Subtract 4y from both sides. Anything subtracted from zero gives its negation.
5x-ax=-4y+1
Add 1 to both sides.
\left(5-a\right)x=-4y+1
Combine all terms containing x.
\left(5-a\right)x=1-4y
The equation is in standard form.
\frac{\left(5-a\right)x}{5-a}=\frac{1-4y}{5-a}
Divide both sides by 5-a.
x=\frac{1-4y}{5-a}
Dividing by 5-a undoes the multiplication by 5-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}