Solve for k
k=5
Share
Copied to clipboard
-3=\frac{3}{4}\left(1-k\right)
Subtract 8 from 5 to get -3.
-3=\frac{3}{4}+\frac{3}{4}\left(-1\right)k
Use the distributive property to multiply \frac{3}{4} by 1-k.
-3=\frac{3}{4}-\frac{3}{4}k
Multiply \frac{3}{4} and -1 to get -\frac{3}{4}.
\frac{3}{4}-\frac{3}{4}k=-3
Swap sides so that all variable terms are on the left hand side.
-\frac{3}{4}k=-3-\frac{3}{4}
Subtract \frac{3}{4} from both sides.
-\frac{3}{4}k=-\frac{12}{4}-\frac{3}{4}
Convert -3 to fraction -\frac{12}{4}.
-\frac{3}{4}k=\frac{-12-3}{4}
Since -\frac{12}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{4}k=-\frac{15}{4}
Subtract 3 from -12 to get -15.
k=-\frac{15}{4}\left(-\frac{4}{3}\right)
Multiply both sides by -\frac{4}{3}, the reciprocal of -\frac{3}{4}.
k=\frac{-15\left(-4\right)}{4\times 3}
Multiply -\frac{15}{4} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
k=\frac{60}{12}
Do the multiplications in the fraction \frac{-15\left(-4\right)}{4\times 3}.
k=5
Divide 60 by 12 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}