Solve for w
w=\frac{-\sqrt{391}i+5}{4}\approx 1.25-4.943429983i
w=\frac{5+\sqrt{391}i}{4}\approx 1.25+4.943429983i
Share
Copied to clipboard
5w-2w^{2}=52
Use the distributive property to multiply 5-2w by w.
5w-2w^{2}-52=0
Subtract 52 from both sides.
-2w^{2}+5w-52=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-5±\sqrt{5^{2}-4\left(-2\right)\left(-52\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 5 for b, and -52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-5±\sqrt{25-4\left(-2\right)\left(-52\right)}}{2\left(-2\right)}
Square 5.
w=\frac{-5±\sqrt{25+8\left(-52\right)}}{2\left(-2\right)}
Multiply -4 times -2.
w=\frac{-5±\sqrt{25-416}}{2\left(-2\right)}
Multiply 8 times -52.
w=\frac{-5±\sqrt{-391}}{2\left(-2\right)}
Add 25 to -416.
w=\frac{-5±\sqrt{391}i}{2\left(-2\right)}
Take the square root of -391.
w=\frac{-5±\sqrt{391}i}{-4}
Multiply 2 times -2.
w=\frac{-5+\sqrt{391}i}{-4}
Now solve the equation w=\frac{-5±\sqrt{391}i}{-4} when ± is plus. Add -5 to i\sqrt{391}.
w=\frac{-\sqrt{391}i+5}{4}
Divide -5+i\sqrt{391} by -4.
w=\frac{-\sqrt{391}i-5}{-4}
Now solve the equation w=\frac{-5±\sqrt{391}i}{-4} when ± is minus. Subtract i\sqrt{391} from -5.
w=\frac{5+\sqrt{391}i}{4}
Divide -5-i\sqrt{391} by -4.
w=\frac{-\sqrt{391}i+5}{4} w=\frac{5+\sqrt{391}i}{4}
The equation is now solved.
5w-2w^{2}=52
Use the distributive property to multiply 5-2w by w.
-2w^{2}+5w=52
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2w^{2}+5w}{-2}=\frac{52}{-2}
Divide both sides by -2.
w^{2}+\frac{5}{-2}w=\frac{52}{-2}
Dividing by -2 undoes the multiplication by -2.
w^{2}-\frac{5}{2}w=\frac{52}{-2}
Divide 5 by -2.
w^{2}-\frac{5}{2}w=-26
Divide 52 by -2.
w^{2}-\frac{5}{2}w+\left(-\frac{5}{4}\right)^{2}=-26+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-\frac{5}{2}w+\frac{25}{16}=-26+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
w^{2}-\frac{5}{2}w+\frac{25}{16}=-\frac{391}{16}
Add -26 to \frac{25}{16}.
\left(w-\frac{5}{4}\right)^{2}=-\frac{391}{16}
Factor w^{2}-\frac{5}{2}w+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{391}{16}}
Take the square root of both sides of the equation.
w-\frac{5}{4}=\frac{\sqrt{391}i}{4} w-\frac{5}{4}=-\frac{\sqrt{391}i}{4}
Simplify.
w=\frac{5+\sqrt{391}i}{4} w=\frac{-\sqrt{391}i+5}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}