Evaluate
25\sqrt{10}+10-4\sqrt{2}-20\sqrt{5}\approx 38.678727705
Share
Copied to clipboard
10+25\sqrt{10}-4\sqrt{2}-10\sqrt{10}\sqrt{2}
Apply the distributive property by multiplying each term of 5-2\sqrt{2} by each term of 2+5\sqrt{10}.
10+25\sqrt{10}-4\sqrt{2}-10\sqrt{2}\sqrt{5}\sqrt{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
10+25\sqrt{10}-4\sqrt{2}-10\times 2\sqrt{5}
Multiply \sqrt{2} and \sqrt{2} to get 2.
10+25\sqrt{10}-4\sqrt{2}-20\sqrt{5}
Multiply -10 and 2 to get -20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}