Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-\sqrt{5}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\sqrt{5}\left(2\sqrt{5}-2\right)
Rationalize the denominator of \frac{5-\sqrt{5}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(5-\sqrt{5}\right)\sqrt{5}}{5}+\sqrt{5}\left(2\sqrt{5}-2\right)
The square of \sqrt{5} is 5.
\frac{5\sqrt{5}-\left(\sqrt{5}\right)^{2}}{5}+\sqrt{5}\left(2\sqrt{5}-2\right)
Use the distributive property to multiply 5-\sqrt{5} by \sqrt{5}.
\frac{5\sqrt{5}-5}{5}+\sqrt{5}\left(2\sqrt{5}-2\right)
The square of \sqrt{5} is 5.
\sqrt{5}-1+\sqrt{5}\left(2\sqrt{5}-2\right)
Divide each term of 5\sqrt{5}-5 by 5 to get \sqrt{5}-1.
\sqrt{5}-1+2\left(\sqrt{5}\right)^{2}-2\sqrt{5}
Use the distributive property to multiply \sqrt{5} by 2\sqrt{5}-2.
\sqrt{5}-1+2\times 5-2\sqrt{5}
The square of \sqrt{5} is 5.
\sqrt{5}-1+10-2\sqrt{5}
Multiply 2 and 5 to get 10.
\sqrt{5}+9-2\sqrt{5}
Add -1 and 10 to get 9.
-\sqrt{5}+9
Combine \sqrt{5} and -2\sqrt{5} to get -\sqrt{5}.