Evaluate
9-\sqrt{5}\approx 6.763932023
Factor
9-\sqrt{5}
Share
Copied to clipboard
\frac{\left(5-\sqrt{5}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\sqrt{5}\left(2\sqrt{5}-2\right)
Rationalize the denominator of \frac{5-\sqrt{5}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(5-\sqrt{5}\right)\sqrt{5}}{5}+\sqrt{5}\left(2\sqrt{5}-2\right)
The square of \sqrt{5} is 5.
\frac{5\sqrt{5}-\left(\sqrt{5}\right)^{2}}{5}+\sqrt{5}\left(2\sqrt{5}-2\right)
Use the distributive property to multiply 5-\sqrt{5} by \sqrt{5}.
\frac{5\sqrt{5}-5}{5}+\sqrt{5}\left(2\sqrt{5}-2\right)
The square of \sqrt{5} is 5.
\sqrt{5}-1+\sqrt{5}\left(2\sqrt{5}-2\right)
Divide each term of 5\sqrt{5}-5 by 5 to get \sqrt{5}-1.
\sqrt{5}-1+2\left(\sqrt{5}\right)^{2}-2\sqrt{5}
Use the distributive property to multiply \sqrt{5} by 2\sqrt{5}-2.
\sqrt{5}-1+2\times 5-2\sqrt{5}
The square of \sqrt{5} is 5.
\sqrt{5}-1+10-2\sqrt{5}
Multiply 2 and 5 to get 10.
\sqrt{5}+9-2\sqrt{5}
Add -1 and 10 to get 9.
-\sqrt{5}+9
Combine \sqrt{5} and -2\sqrt{5} to get -\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}