Evaluate (complex solution)
1+13i
Real Part (complex solution)
1
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\left(5-3i\right)\left(-1+\sqrt{-4}\right)
Calculate the square root of -9 and get 3i.
\left(5-3i\right)\left(-1+2i\right)
Calculate the square root of -4 and get 2i.
5\left(-1\right)+5\times \left(2i\right)-3i\left(-1\right)-3\times 2i^{2}
Multiply complex numbers 5-3i and -1+2i like you multiply binomials.
5\left(-1\right)+5\times \left(2i\right)-3i\left(-1\right)-3\times 2\left(-1\right)
By definition, i^{2} is -1.
-5+10i+3i+6
Do the multiplications.
-5+6+\left(10+3\right)i
Combine the real and imaginary parts.
1+13i
Do the additions.
Re(\left(5-3i\right)\left(-1+\sqrt{-4}\right))
Calculate the square root of -9 and get 3i.
Re(\left(5-3i\right)\left(-1+2i\right))
Calculate the square root of -4 and get 2i.
Re(5\left(-1\right)+5\times \left(2i\right)-3i\left(-1\right)-3\times 2i^{2})
Multiply complex numbers 5-3i and -1+2i like you multiply binomials.
Re(5\left(-1\right)+5\times \left(2i\right)-3i\left(-1\right)-3\times 2\left(-1\right))
By definition, i^{2} is -1.
Re(-5+10i+3i+6)
Do the multiplications in 5\left(-1\right)+5\times \left(2i\right)-3i\left(-1\right)-3\times 2\left(-1\right).
Re(-5+6+\left(10+3\right)i)
Combine the real and imaginary parts in -5+10i+3i+6.
Re(1+13i)
Do the additions in -5+6+\left(10+3\right)i.
1
The real part of 1+13i is 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}