Solve for x
x\geq \frac{129}{11}
Graph
Quiz
Algebra
5 problems similar to:
( 5 ) 4 - \frac { 3 x - 1 } { 4 } \leq \frac { 5 ( x + 5 ) } { 8 } + 1
Share
Copied to clipboard
40\times 4-2\left(3x-1\right)\leq 5\left(x+5\right)+8
Multiply both sides of the equation by 8, the least common multiple of 4,8. Since 8 is positive, the inequality direction remains the same.
160-2\left(3x-1\right)\leq 5\left(x+5\right)+8
Multiply 40 and 4 to get 160.
160-6x+2\leq 5\left(x+5\right)+8
Use the distributive property to multiply -2 by 3x-1.
162-6x\leq 5\left(x+5\right)+8
Add 160 and 2 to get 162.
162-6x\leq 5x+25+8
Use the distributive property to multiply 5 by x+5.
162-6x\leq 5x+33
Add 25 and 8 to get 33.
162-6x-5x\leq 33
Subtract 5x from both sides.
162-11x\leq 33
Combine -6x and -5x to get -11x.
-11x\leq 33-162
Subtract 162 from both sides.
-11x\leq -129
Subtract 162 from 33 to get -129.
x\geq \frac{-129}{-11}
Divide both sides by -11. Since -11 is negative, the inequality direction is changed.
x\geq \frac{129}{11}
Fraction \frac{-129}{-11} can be simplified to \frac{129}{11} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}