Evaluate
120\sqrt{10}+280\approx 659.47331922
Expand
120 \sqrt{10} + 280 = 659.47331922
Share
Copied to clipboard
5\left(4\left(\sqrt{5}\right)^{2}+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+5\sqrt{2}\right)^{2}.
5\left(4\times 5+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
5\left(20+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 4 and 5 to get 20.
5\left(20+20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5\left(20+20\sqrt{10}+25\times 2\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
5\left(20+20\sqrt{10}+50\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 25 and 2 to get 50.
5\left(70+20\sqrt{10}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Add 20 and 50 to get 70.
350+100\sqrt{10}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use the distributive property to multiply 5 by 70+20\sqrt{10}.
350+100\sqrt{10}-\left(4\left(\sqrt{5}\right)^{2}-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{5}-5\sqrt{2}\right)^{2}.
350+100\sqrt{10}-\left(4\times 5-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
350+100\sqrt{10}-\left(20-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Multiply 4 and 5 to get 20.
350+100\sqrt{10}-\left(20-20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
350+100\sqrt{10}-\left(20-20\sqrt{10}+25\times 2\right)
The square of \sqrt{2} is 2.
350+100\sqrt{10}-\left(20-20\sqrt{10}+50\right)
Multiply 25 and 2 to get 50.
350+100\sqrt{10}-\left(70-20\sqrt{10}\right)
Add 20 and 50 to get 70.
350+100\sqrt{10}-70+20\sqrt{10}
To find the opposite of 70-20\sqrt{10}, find the opposite of each term.
280+100\sqrt{10}+20\sqrt{10}
Subtract 70 from 350 to get 280.
280+120\sqrt{10}
Combine 100\sqrt{10} and 20\sqrt{10} to get 120\sqrt{10}.
5\left(4\left(\sqrt{5}\right)^{2}+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+5\sqrt{2}\right)^{2}.
5\left(4\times 5+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
5\left(20+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 4 and 5 to get 20.
5\left(20+20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5\left(20+20\sqrt{10}+25\times 2\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
5\left(20+20\sqrt{10}+50\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 25 and 2 to get 50.
5\left(70+20\sqrt{10}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Add 20 and 50 to get 70.
350+100\sqrt{10}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use the distributive property to multiply 5 by 70+20\sqrt{10}.
350+100\sqrt{10}-\left(4\left(\sqrt{5}\right)^{2}-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{5}-5\sqrt{2}\right)^{2}.
350+100\sqrt{10}-\left(4\times 5-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
350+100\sqrt{10}-\left(20-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Multiply 4 and 5 to get 20.
350+100\sqrt{10}-\left(20-20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
350+100\sqrt{10}-\left(20-20\sqrt{10}+25\times 2\right)
The square of \sqrt{2} is 2.
350+100\sqrt{10}-\left(20-20\sqrt{10}+50\right)
Multiply 25 and 2 to get 50.
350+100\sqrt{10}-\left(70-20\sqrt{10}\right)
Add 20 and 50 to get 70.
350+100\sqrt{10}-70+20\sqrt{10}
To find the opposite of 70-20\sqrt{10}, find the opposite of each term.
280+100\sqrt{10}+20\sqrt{10}
Subtract 70 from 350 to get 280.
280+120\sqrt{10}
Combine 100\sqrt{10} and 20\sqrt{10} to get 120\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}