Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

5\left(4\left(\sqrt{5}\right)^{2}+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+5\sqrt{2}\right)^{2}.
5\left(4\times 5+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
5\left(20+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 4 and 5 to get 20.
5\left(20+20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5\left(20+20\sqrt{10}+25\times 2\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
5\left(20+20\sqrt{10}+50\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 25 and 2 to get 50.
5\left(70+20\sqrt{10}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Add 20 and 50 to get 70.
350+100\sqrt{10}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use the distributive property to multiply 5 by 70+20\sqrt{10}.
350+100\sqrt{10}-\left(4\left(\sqrt{5}\right)^{2}-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{5}-5\sqrt{2}\right)^{2}.
350+100\sqrt{10}-\left(4\times 5-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
350+100\sqrt{10}-\left(20-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Multiply 4 and 5 to get 20.
350+100\sqrt{10}-\left(20-20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
350+100\sqrt{10}-\left(20-20\sqrt{10}+25\times 2\right)
The square of \sqrt{2} is 2.
350+100\sqrt{10}-\left(20-20\sqrt{10}+50\right)
Multiply 25 and 2 to get 50.
350+100\sqrt{10}-\left(70-20\sqrt{10}\right)
Add 20 and 50 to get 70.
350+100\sqrt{10}-70+20\sqrt{10}
To find the opposite of 70-20\sqrt{10}, find the opposite of each term.
280+100\sqrt{10}+20\sqrt{10}
Subtract 70 from 350 to get 280.
280+120\sqrt{10}
Combine 100\sqrt{10} and 20\sqrt{10} to get 120\sqrt{10}.
5\left(4\left(\sqrt{5}\right)^{2}+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+5\sqrt{2}\right)^{2}.
5\left(4\times 5+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
5\left(20+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 4 and 5 to get 20.
5\left(20+20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5\left(20+20\sqrt{10}+25\times 2\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
5\left(20+20\sqrt{10}+50\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 25 and 2 to get 50.
5\left(70+20\sqrt{10}\right)-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Add 20 and 50 to get 70.
350+100\sqrt{10}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use the distributive property to multiply 5 by 70+20\sqrt{10}.
350+100\sqrt{10}-\left(4\left(\sqrt{5}\right)^{2}-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{5}-5\sqrt{2}\right)^{2}.
350+100\sqrt{10}-\left(4\times 5-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
350+100\sqrt{10}-\left(20-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Multiply 4 and 5 to get 20.
350+100\sqrt{10}-\left(20-20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
350+100\sqrt{10}-\left(20-20\sqrt{10}+25\times 2\right)
The square of \sqrt{2} is 2.
350+100\sqrt{10}-\left(20-20\sqrt{10}+50\right)
Multiply 25 and 2 to get 50.
350+100\sqrt{10}-\left(70-20\sqrt{10}\right)
Add 20 and 50 to get 70.
350+100\sqrt{10}-70+20\sqrt{10}
To find the opposite of 70-20\sqrt{10}, find the opposite of each term.
280+100\sqrt{10}+20\sqrt{10}
Subtract 70 from 350 to get 280.
280+120\sqrt{10}
Combine 100\sqrt{10} and 20\sqrt{10} to get 120\sqrt{10}.