Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

25\left(\sqrt{3}\right)^{2}-10\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{7^{2}}\sqrt{15}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{3}-\sqrt{5}\right)^{2}.
25\times 3-10\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{7^{2}}\sqrt{15}
The square of \sqrt{3} is 3.
75-10\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{7^{2}}\sqrt{15}
Multiply 25 and 3 to get 75.
75-10\sqrt{15}+\left(\sqrt{5}\right)^{2}-\sqrt{7^{2}}\sqrt{15}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
75-10\sqrt{15}+5-\sqrt{7^{2}}\sqrt{15}
The square of \sqrt{5} is 5.
80-10\sqrt{15}-\sqrt{7^{2}}\sqrt{15}
Add 75 and 5 to get 80.
80-10\sqrt{15}-\sqrt{49}\sqrt{15}
Calculate 7 to the power of 2 and get 49.
80-10\sqrt{15}-7\sqrt{15}
Calculate the square root of 49 and get 7.
80-17\sqrt{15}
Combine -10\sqrt{15} and -7\sqrt{15} to get -17\sqrt{15}.