Evaluate
80-17\sqrt{15}\approx 14.159283114
Share
Copied to clipboard
25\left(\sqrt{3}\right)^{2}-10\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{7^{2}}\sqrt{15}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{3}-\sqrt{5}\right)^{2}.
25\times 3-10\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{7^{2}}\sqrt{15}
The square of \sqrt{3} is 3.
75-10\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\sqrt{7^{2}}\sqrt{15}
Multiply 25 and 3 to get 75.
75-10\sqrt{15}+\left(\sqrt{5}\right)^{2}-\sqrt{7^{2}}\sqrt{15}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
75-10\sqrt{15}+5-\sqrt{7^{2}}\sqrt{15}
The square of \sqrt{5} is 5.
80-10\sqrt{15}-\sqrt{7^{2}}\sqrt{15}
Add 75 and 5 to get 80.
80-10\sqrt{15}-\sqrt{49}\sqrt{15}
Calculate 7 to the power of 2 and get 49.
80-10\sqrt{15}-7\sqrt{15}
Calculate the square root of 49 and get 7.
80-17\sqrt{15}
Combine -10\sqrt{15} and -7\sqrt{15} to get -17\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}