Evaluate
62\sqrt{6}+146\approx 297.868364053
Factor
2 {(31 \sqrt{6} + 73)} = 297.868364053
Quiz
Arithmetic
5 problems similar to:
( 5 \sqrt { 3 } + 7 \sqrt { 2 } ) ( 6 \sqrt { 3 } + 4 \sqrt { 2 } )
Share
Copied to clipboard
30\left(\sqrt{3}\right)^{2}+20\sqrt{3}\sqrt{2}+42\sqrt{3}\sqrt{2}+28\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of 5\sqrt{3}+7\sqrt{2} by each term of 6\sqrt{3}+4\sqrt{2}.
30\times 3+20\sqrt{3}\sqrt{2}+42\sqrt{3}\sqrt{2}+28\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
90+20\sqrt{3}\sqrt{2}+42\sqrt{3}\sqrt{2}+28\left(\sqrt{2}\right)^{2}
Multiply 30 and 3 to get 90.
90+20\sqrt{6}+42\sqrt{3}\sqrt{2}+28\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
90+20\sqrt{6}+42\sqrt{6}+28\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
90+62\sqrt{6}+28\left(\sqrt{2}\right)^{2}
Combine 20\sqrt{6} and 42\sqrt{6} to get 62\sqrt{6}.
90+62\sqrt{6}+28\times 2
The square of \sqrt{2} is 2.
90+62\sqrt{6}+56
Multiply 28 and 2 to get 56.
146+62\sqrt{6}
Add 90 and 56 to get 146.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}