Evaluate
4-9\sqrt{6}\approx -18.045407685
Share
Copied to clipboard
5\left(\sqrt{2}\right)^{2}-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of 5\sqrt{2}+\sqrt{3} by each term of \sqrt{2}-2\sqrt{3}.
5\times 2-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
10-10\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
Multiply 5 and 2 to get 10.
10-10\sqrt{6}+\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
10-10\sqrt{6}+\sqrt{6}-2\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
10-9\sqrt{6}-2\left(\sqrt{3}\right)^{2}
Combine -10\sqrt{6} and \sqrt{6} to get -9\sqrt{6}.
10-9\sqrt{6}-2\times 3
The square of \sqrt{3} is 3.
10-9\sqrt{6}-6
Multiply -2 and 3 to get -6.
4-9\sqrt{6}
Subtract 6 from 10 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}