Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

25\left(\sqrt{14}\right)^{2}-30\sqrt{14}\sqrt{21}+9\left(\sqrt{21}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{14}-3\sqrt{21}\right)^{2}.
25\times 14-30\sqrt{14}\sqrt{21}+9\left(\sqrt{21}\right)^{2}
The square of \sqrt{14} is 14.
350-30\sqrt{14}\sqrt{21}+9\left(\sqrt{21}\right)^{2}
Multiply 25 and 14 to get 350.
350-30\sqrt{294}+9\left(\sqrt{21}\right)^{2}
To multiply \sqrt{14} and \sqrt{21}, multiply the numbers under the square root.
350-30\sqrt{294}+9\times 21
The square of \sqrt{21} is 21.
350-30\sqrt{294}+189
Multiply 9 and 21 to get 189.
539-30\sqrt{294}
Add 350 and 189 to get 539.
539-30\times 7\sqrt{6}
Factor 294=7^{2}\times 6. Rewrite the square root of the product \sqrt{7^{2}\times 6} as the product of square roots \sqrt{7^{2}}\sqrt{6}. Take the square root of 7^{2}.
539-210\sqrt{6}
Multiply -30 and 7 to get -210.
25\left(\sqrt{14}\right)^{2}-30\sqrt{14}\sqrt{21}+9\left(\sqrt{21}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{14}-3\sqrt{21}\right)^{2}.
25\times 14-30\sqrt{14}\sqrt{21}+9\left(\sqrt{21}\right)^{2}
The square of \sqrt{14} is 14.
350-30\sqrt{14}\sqrt{21}+9\left(\sqrt{21}\right)^{2}
Multiply 25 and 14 to get 350.
350-30\sqrt{294}+9\left(\sqrt{21}\right)^{2}
To multiply \sqrt{14} and \sqrt{21}, multiply the numbers under the square root.
350-30\sqrt{294}+9\times 21
The square of \sqrt{21} is 21.
350-30\sqrt{294}+189
Multiply 9 and 21 to get 189.
539-30\sqrt{294}
Add 350 and 189 to get 539.
539-30\times 7\sqrt{6}
Factor 294=7^{2}\times 6. Rewrite the square root of the product \sqrt{7^{2}\times 6} as the product of square roots \sqrt{7^{2}}\sqrt{6}. Take the square root of 7^{2}.
539-210\sqrt{6}
Multiply -30 and 7 to get -210.