Evaluate
-\frac{\sqrt{30}}{6}+8\approx 7.087129071
Quiz
Arithmetic
( 5 \sqrt { \frac { 1 } { 6 } } - \sqrt { 20 } - 2 \sqrt { 45 } ) \div ( - \sqrt { 5 } )
Share
Copied to clipboard
\frac{5\times \frac{\sqrt{1}}{\sqrt{6}}-\sqrt{20}-2\sqrt{45}}{-\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
\frac{5\times \frac{1}{\sqrt{6}}-\sqrt{20}-2\sqrt{45}}{-\sqrt{5}}
Calculate the square root of 1 and get 1.
\frac{5\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-\sqrt{20}-2\sqrt{45}}{-\sqrt{5}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{5\times \frac{\sqrt{6}}{6}-\sqrt{20}-2\sqrt{45}}{-\sqrt{5}}
The square of \sqrt{6} is 6.
\frac{\frac{5\sqrt{6}}{6}-\sqrt{20}-2\sqrt{45}}{-\sqrt{5}}
Express 5\times \frac{\sqrt{6}}{6} as a single fraction.
\frac{\frac{5\sqrt{6}}{6}-2\sqrt{5}-2\sqrt{45}}{-\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\frac{5\sqrt{6}}{6}-2\sqrt{5}-2\times 3\sqrt{5}}{-\sqrt{5}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{\frac{5\sqrt{6}}{6}-2\sqrt{5}-6\sqrt{5}}{-\sqrt{5}}
Multiply -2 and 3 to get -6.
\frac{\frac{5\sqrt{6}}{6}-8\sqrt{5}}{-\sqrt{5}}
Combine -2\sqrt{5} and -6\sqrt{5} to get -8\sqrt{5}.
\frac{\frac{5\sqrt{6}}{6}+\frac{6\left(-8\right)\sqrt{5}}{6}}{-\sqrt{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -8\sqrt{5} times \frac{6}{6}.
\frac{\frac{5\sqrt{6}+6\left(-8\right)\sqrt{5}}{6}}{-\sqrt{5}}
Since \frac{5\sqrt{6}}{6} and \frac{6\left(-8\right)\sqrt{5}}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{5\sqrt{6}-48\sqrt{5}}{6}}{-\sqrt{5}}
Do the multiplications in 5\sqrt{6}+6\left(-8\right)\sqrt{5}.
\frac{5\sqrt{6}-48\sqrt{5}}{6\left(-\sqrt{5}\right)}
Express \frac{\frac{5\sqrt{6}-48\sqrt{5}}{6}}{-\sqrt{5}} as a single fraction.
\frac{5\sqrt{6}-48\sqrt{5}}{-6\sqrt{5}}
Multiply 6 and -1 to get -6.
\frac{\left(5\sqrt{6}-48\sqrt{5}\right)\sqrt{5}}{-6\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{6}-48\sqrt{5}}{-6\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(5\sqrt{6}-48\sqrt{5}\right)\sqrt{5}}{-6\times 5}
The square of \sqrt{5} is 5.
\frac{\left(5\sqrt{6}-48\sqrt{5}\right)\sqrt{5}}{-30}
Multiply -6 and 5 to get -30.
\frac{5\sqrt{6}\sqrt{5}-48\left(\sqrt{5}\right)^{2}}{-30}
Use the distributive property to multiply 5\sqrt{6}-48\sqrt{5} by \sqrt{5}.
\frac{5\sqrt{30}-48\left(\sqrt{5}\right)^{2}}{-30}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\frac{5\sqrt{30}-48\times 5}{-30}
The square of \sqrt{5} is 5.
\frac{5\sqrt{30}-240}{-30}
Multiply -48 and 5 to get -240.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}