Evaluate
5
Factor
5
Share
Copied to clipboard
\frac{5\times \frac{\sqrt{1}}{\sqrt{5}}-2\sqrt{45}}{-\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
\frac{5\times \frac{1}{\sqrt{5}}-2\sqrt{45}}{-\sqrt{5}}
Calculate the square root of 1 and get 1.
\frac{5\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-2\sqrt{45}}{-\sqrt{5}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{5\times \frac{\sqrt{5}}{5}-2\sqrt{45}}{-\sqrt{5}}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}-2\sqrt{45}}{-\sqrt{5}}
Cancel out 5 and 5.
\frac{\sqrt{5}-2\times 3\sqrt{5}}{-\sqrt{5}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{\sqrt{5}-6\sqrt{5}}{-\sqrt{5}}
Multiply -2 and 3 to get -6.
\frac{-5\sqrt{5}}{-\sqrt{5}}
Combine \sqrt{5} and -6\sqrt{5} to get -5\sqrt{5}.
\frac{-5}{-1}
Cancel out \sqrt{5} in both numerator and denominator.
5
Fraction \frac{-5}{-1} can be simplified to 5 by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}