Evaluate
-\frac{11101}{330}\approx -33.639393939
Factor
-\frac{11101}{330} = -33\frac{211}{330} = -33.63939393939394
Share
Copied to clipboard
\frac{30+5}{6}+\frac{\frac{9\times 3+2}{3}}{\frac{18\times 3+1}{3}}-40
Multiply 5 and 6 to get 30.
\frac{35}{6}+\frac{\frac{9\times 3+2}{3}}{\frac{18\times 3+1}{3}}-40
Add 30 and 5 to get 35.
\frac{35}{6}+\frac{\left(9\times 3+2\right)\times 3}{3\left(18\times 3+1\right)}-40
Divide \frac{9\times 3+2}{3} by \frac{18\times 3+1}{3} by multiplying \frac{9\times 3+2}{3} by the reciprocal of \frac{18\times 3+1}{3}.
\frac{35}{6}+\frac{2+3\times 9}{1+3\times 18}-40
Cancel out 3 in both numerator and denominator.
\frac{35}{6}+\frac{2+27}{1+3\times 18}-40
Multiply 3 and 9 to get 27.
\frac{35}{6}+\frac{29}{1+3\times 18}-40
Add 2 and 27 to get 29.
\frac{35}{6}+\frac{29}{1+54}-40
Multiply 3 and 18 to get 54.
\frac{35}{6}+\frac{29}{55}-40
Add 1 and 54 to get 55.
\frac{1925}{330}+\frac{174}{330}-40
Least common multiple of 6 and 55 is 330. Convert \frac{35}{6} and \frac{29}{55} to fractions with denominator 330.
\frac{1925+174}{330}-40
Since \frac{1925}{330} and \frac{174}{330} have the same denominator, add them by adding their numerators.
\frac{2099}{330}-40
Add 1925 and 174 to get 2099.
\frac{2099}{330}-\frac{13200}{330}
Convert 40 to fraction \frac{13200}{330}.
\frac{2099-13200}{330}
Since \frac{2099}{330} and \frac{13200}{330} have the same denominator, subtract them by subtracting their numerators.
-\frac{11101}{330}
Subtract 13200 from 2099 to get -11101.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}