Solve for x
x=-\log_{5}\left(26\right)+3\approx 0.975630801
Solve for x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(5)}-\log_{5}\left(26\right)+3
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\left(3125+0.01\right)^{2}-\left(5^{5}-0.01\right)^{2}=5^{x}\times 26
Calculate 5 to the power of 5 and get 3125.
3125.01^{2}-\left(5^{5}-0.01\right)^{2}=5^{x}\times 26
Add 3125 and 0.01 to get 3125.01.
9765687.5001-\left(5^{5}-0.01\right)^{2}=5^{x}\times 26
Calculate 3125.01 to the power of 2 and get 9765687.5001.
9765687.5001-\left(3125-0.01\right)^{2}=5^{x}\times 26
Calculate 5 to the power of 5 and get 3125.
9765687.5001-3124.99^{2}=5^{x}\times 26
Subtract 0.01 from 3125 to get 3124.99.
9765687.5001-9765562.5001=5^{x}\times 26
Calculate 3124.99 to the power of 2 and get 9765562.5001.
125=5^{x}\times 26
Subtract 9765562.5001 from 9765687.5001 to get 125.
5^{x}\times 26=125
Swap sides so that all variable terms are on the left hand side.
5^{x}\times 26-125=0
Subtract 125 from both sides.
26\times 5^{x}-125=0
Use the rules of exponents and logarithms to solve the equation.
26\times 5^{x}=125
Add 125 to both sides of the equation.
5^{x}=\frac{125}{26}
Divide both sides by 26.
\log(5^{x})=\log(\frac{125}{26})
Take the logarithm of both sides of the equation.
x\log(5)=\log(\frac{125}{26})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{125}{26})}{\log(5)}
Divide both sides by \log(5).
x=\log_{5}\left(\frac{125}{26}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}