Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

80+47x+6x^{2}=133
Use the distributive property to multiply 5+2x by 16+3x and combine like terms.
80+47x+6x^{2}-133=0
Subtract 133 from both sides.
-53+47x+6x^{2}=0
Subtract 133 from 80 to get -53.
6x^{2}+47x-53=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-47±\sqrt{47^{2}-4\times 6\left(-53\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 47 for b, and -53 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-47±\sqrt{2209-4\times 6\left(-53\right)}}{2\times 6}
Square 47.
x=\frac{-47±\sqrt{2209-24\left(-53\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-47±\sqrt{2209+1272}}{2\times 6}
Multiply -24 times -53.
x=\frac{-47±\sqrt{3481}}{2\times 6}
Add 2209 to 1272.
x=\frac{-47±59}{2\times 6}
Take the square root of 3481.
x=\frac{-47±59}{12}
Multiply 2 times 6.
x=\frac{12}{12}
Now solve the equation x=\frac{-47±59}{12} when ± is plus. Add -47 to 59.
x=1
Divide 12 by 12.
x=-\frac{106}{12}
Now solve the equation x=\frac{-47±59}{12} when ± is minus. Subtract 59 from -47.
x=-\frac{53}{6}
Reduce the fraction \frac{-106}{12} to lowest terms by extracting and canceling out 2.
x=1 x=-\frac{53}{6}
The equation is now solved.
80+47x+6x^{2}=133
Use the distributive property to multiply 5+2x by 16+3x and combine like terms.
47x+6x^{2}=133-80
Subtract 80 from both sides.
47x+6x^{2}=53
Subtract 80 from 133 to get 53.
6x^{2}+47x=53
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}+47x}{6}=\frac{53}{6}
Divide both sides by 6.
x^{2}+\frac{47}{6}x=\frac{53}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{47}{6}x+\left(\frac{47}{12}\right)^{2}=\frac{53}{6}+\left(\frac{47}{12}\right)^{2}
Divide \frac{47}{6}, the coefficient of the x term, by 2 to get \frac{47}{12}. Then add the square of \frac{47}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{47}{6}x+\frac{2209}{144}=\frac{53}{6}+\frac{2209}{144}
Square \frac{47}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{47}{6}x+\frac{2209}{144}=\frac{3481}{144}
Add \frac{53}{6} to \frac{2209}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{47}{12}\right)^{2}=\frac{3481}{144}
Factor x^{2}+\frac{47}{6}x+\frac{2209}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{47}{12}\right)^{2}}=\sqrt{\frac{3481}{144}}
Take the square root of both sides of the equation.
x+\frac{47}{12}=\frac{59}{12} x+\frac{47}{12}=-\frac{59}{12}
Simplify.
x=1 x=-\frac{53}{6}
Subtract \frac{47}{12} from both sides of the equation.