Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=a+b\sqrt{3}
Rationalize the denominator of \frac{5+2\sqrt{3}}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Calculate 7 to the power of 2 and get 49.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Calculate 4 to the power of 2 and get 16.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}=a+b\sqrt{3}
The square of \sqrt{3} is 3.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}=a+b\sqrt{3}
Multiply 16 and 3 to get 48.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}=a+b\sqrt{3}
Subtract 48 from 49 to get 1.
\left(5+2\sqrt{3}\right)\left(7-4\sqrt{3}\right)=a+b\sqrt{3}
Anything divided by one gives itself.
35-6\sqrt{3}-8\left(\sqrt{3}\right)^{2}=a+b\sqrt{3}
Use the distributive property to multiply 5+2\sqrt{3} by 7-4\sqrt{3} and combine like terms.
35-6\sqrt{3}-8\times 3=a+b\sqrt{3}
The square of \sqrt{3} is 3.
35-6\sqrt{3}-24=a+b\sqrt{3}
Multiply -8 and 3 to get -24.
11-6\sqrt{3}=a+b\sqrt{3}
Subtract 24 from 35 to get 11.
a+b\sqrt{3}=11-6\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{3}=11-6\sqrt{3}-a
Subtract a from both sides.
\sqrt{3}b=-a+11-6\sqrt{3}
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+11-6\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+11-6\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+11-6\sqrt{3}\right)}{3}
Divide -6\sqrt{3}-a+11 by \sqrt{3}.