Solve for m
m=\sqrt{565}+15\approx 38.769728648
m=15-\sqrt{565}\approx -8.769728648
Share
Copied to clipboard
800+60m-2m^{2}=120
Use the distributive property to multiply 40-m by 20+2m and combine like terms.
800+60m-2m^{2}-120=0
Subtract 120 from both sides.
680+60m-2m^{2}=0
Subtract 120 from 800 to get 680.
-2m^{2}+60m+680=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-60±\sqrt{60^{2}-4\left(-2\right)\times 680}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 60 for b, and 680 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-60±\sqrt{3600-4\left(-2\right)\times 680}}{2\left(-2\right)}
Square 60.
m=\frac{-60±\sqrt{3600+8\times 680}}{2\left(-2\right)}
Multiply -4 times -2.
m=\frac{-60±\sqrt{3600+5440}}{2\left(-2\right)}
Multiply 8 times 680.
m=\frac{-60±\sqrt{9040}}{2\left(-2\right)}
Add 3600 to 5440.
m=\frac{-60±4\sqrt{565}}{2\left(-2\right)}
Take the square root of 9040.
m=\frac{-60±4\sqrt{565}}{-4}
Multiply 2 times -2.
m=\frac{4\sqrt{565}-60}{-4}
Now solve the equation m=\frac{-60±4\sqrt{565}}{-4} when ± is plus. Add -60 to 4\sqrt{565}.
m=15-\sqrt{565}
Divide -60+4\sqrt{565} by -4.
m=\frac{-4\sqrt{565}-60}{-4}
Now solve the equation m=\frac{-60±4\sqrt{565}}{-4} when ± is minus. Subtract 4\sqrt{565} from -60.
m=\sqrt{565}+15
Divide -60-4\sqrt{565} by -4.
m=15-\sqrt{565} m=\sqrt{565}+15
The equation is now solved.
800+60m-2m^{2}=120
Use the distributive property to multiply 40-m by 20+2m and combine like terms.
60m-2m^{2}=120-800
Subtract 800 from both sides.
60m-2m^{2}=-680
Subtract 800 from 120 to get -680.
-2m^{2}+60m=-680
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2m^{2}+60m}{-2}=-\frac{680}{-2}
Divide both sides by -2.
m^{2}+\frac{60}{-2}m=-\frac{680}{-2}
Dividing by -2 undoes the multiplication by -2.
m^{2}-30m=-\frac{680}{-2}
Divide 60 by -2.
m^{2}-30m=340
Divide -680 by -2.
m^{2}-30m+\left(-15\right)^{2}=340+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-30m+225=340+225
Square -15.
m^{2}-30m+225=565
Add 340 to 225.
\left(m-15\right)^{2}=565
Factor m^{2}-30m+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-15\right)^{2}}=\sqrt{565}
Take the square root of both sides of the equation.
m-15=\sqrt{565} m-15=-\sqrt{565}
Simplify.
m=\sqrt{565}+15 m=15-\sqrt{565}
Add 15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}