Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1040-132x+4x^{2}=144
Use the distributive property to multiply 40-2x by 26-2x and combine like terms.
1040-132x+4x^{2}-144=0
Subtract 144 from both sides.
896-132x+4x^{2}=0
Subtract 144 from 1040 to get 896.
4x^{2}-132x+896=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-132\right)±\sqrt{\left(-132\right)^{2}-4\times 4\times 896}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -132 for b, and 896 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-132\right)±\sqrt{17424-4\times 4\times 896}}{2\times 4}
Square -132.
x=\frac{-\left(-132\right)±\sqrt{17424-16\times 896}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-132\right)±\sqrt{17424-14336}}{2\times 4}
Multiply -16 times 896.
x=\frac{-\left(-132\right)±\sqrt{3088}}{2\times 4}
Add 17424 to -14336.
x=\frac{-\left(-132\right)±4\sqrt{193}}{2\times 4}
Take the square root of 3088.
x=\frac{132±4\sqrt{193}}{2\times 4}
The opposite of -132 is 132.
x=\frac{132±4\sqrt{193}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{193}+132}{8}
Now solve the equation x=\frac{132±4\sqrt{193}}{8} when ± is plus. Add 132 to 4\sqrt{193}.
x=\frac{\sqrt{193}+33}{2}
Divide 132+4\sqrt{193} by 8.
x=\frac{132-4\sqrt{193}}{8}
Now solve the equation x=\frac{132±4\sqrt{193}}{8} when ± is minus. Subtract 4\sqrt{193} from 132.
x=\frac{33-\sqrt{193}}{2}
Divide 132-4\sqrt{193} by 8.
x=\frac{\sqrt{193}+33}{2} x=\frac{33-\sqrt{193}}{2}
The equation is now solved.
1040-132x+4x^{2}=144
Use the distributive property to multiply 40-2x by 26-2x and combine like terms.
-132x+4x^{2}=144-1040
Subtract 1040 from both sides.
-132x+4x^{2}=-896
Subtract 1040 from 144 to get -896.
4x^{2}-132x=-896
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-132x}{4}=-\frac{896}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{132}{4}\right)x=-\frac{896}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-33x=-\frac{896}{4}
Divide -132 by 4.
x^{2}-33x=-224
Divide -896 by 4.
x^{2}-33x+\left(-\frac{33}{2}\right)^{2}=-224+\left(-\frac{33}{2}\right)^{2}
Divide -33, the coefficient of the x term, by 2 to get -\frac{33}{2}. Then add the square of -\frac{33}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-33x+\frac{1089}{4}=-224+\frac{1089}{4}
Square -\frac{33}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-33x+\frac{1089}{4}=\frac{193}{4}
Add -224 to \frac{1089}{4}.
\left(x-\frac{33}{2}\right)^{2}=\frac{193}{4}
Factor x^{2}-33x+\frac{1089}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{33}{2}\right)^{2}}=\sqrt{\frac{193}{4}}
Take the square root of both sides of the equation.
x-\frac{33}{2}=\frac{\sqrt{193}}{2} x-\frac{33}{2}=-\frac{\sqrt{193}}{2}
Simplify.
x=\frac{\sqrt{193}+33}{2} x=\frac{33-\sqrt{193}}{2}
Add \frac{33}{2} to both sides of the equation.