Solve for x
x=140
x=5
Graph
Share
Copied to clipboard
10000-580x+4x^{2}=7200
Use the distributive property to multiply 40-2x by 250-2x and combine like terms.
10000-580x+4x^{2}-7200=0
Subtract 7200 from both sides.
2800-580x+4x^{2}=0
Subtract 7200 from 10000 to get 2800.
4x^{2}-580x+2800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-580\right)±\sqrt{\left(-580\right)^{2}-4\times 4\times 2800}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -580 for b, and 2800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-580\right)±\sqrt{336400-4\times 4\times 2800}}{2\times 4}
Square -580.
x=\frac{-\left(-580\right)±\sqrt{336400-16\times 2800}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-580\right)±\sqrt{336400-44800}}{2\times 4}
Multiply -16 times 2800.
x=\frac{-\left(-580\right)±\sqrt{291600}}{2\times 4}
Add 336400 to -44800.
x=\frac{-\left(-580\right)±540}{2\times 4}
Take the square root of 291600.
x=\frac{580±540}{2\times 4}
The opposite of -580 is 580.
x=\frac{580±540}{8}
Multiply 2 times 4.
x=\frac{1120}{8}
Now solve the equation x=\frac{580±540}{8} when ± is plus. Add 580 to 540.
x=140
Divide 1120 by 8.
x=\frac{40}{8}
Now solve the equation x=\frac{580±540}{8} when ± is minus. Subtract 540 from 580.
x=5
Divide 40 by 8.
x=140 x=5
The equation is now solved.
10000-580x+4x^{2}=7200
Use the distributive property to multiply 40-2x by 250-2x and combine like terms.
-580x+4x^{2}=7200-10000
Subtract 10000 from both sides.
-580x+4x^{2}=-2800
Subtract 10000 from 7200 to get -2800.
4x^{2}-580x=-2800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-580x}{4}=-\frac{2800}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{580}{4}\right)x=-\frac{2800}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-145x=-\frac{2800}{4}
Divide -580 by 4.
x^{2}-145x=-700
Divide -2800 by 4.
x^{2}-145x+\left(-\frac{145}{2}\right)^{2}=-700+\left(-\frac{145}{2}\right)^{2}
Divide -145, the coefficient of the x term, by 2 to get -\frac{145}{2}. Then add the square of -\frac{145}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-145x+\frac{21025}{4}=-700+\frac{21025}{4}
Square -\frac{145}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-145x+\frac{21025}{4}=\frac{18225}{4}
Add -700 to \frac{21025}{4}.
\left(x-\frac{145}{2}\right)^{2}=\frac{18225}{4}
Factor x^{2}-145x+\frac{21025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{145}{2}\right)^{2}}=\sqrt{\frac{18225}{4}}
Take the square root of both sides of the equation.
x-\frac{145}{2}=\frac{135}{2} x-\frac{145}{2}=-\frac{135}{2}
Simplify.
x=140 x=5
Add \frac{145}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}