Evaluate
\frac{25}{4}=6.25
Factor
\frac{5 ^ {2}}{2 ^ {2}} = 6\frac{1}{4} = 6.25
Share
Copied to clipboard
\frac{\frac{40}{-\frac{30+2}{15}}-\frac{\frac{25\times 7+5}{7}}{-\frac{1\times 35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Multiply 2 and 15 to get 30.
\frac{\frac{40}{-\frac{32}{15}}-\frac{\frac{25\times 7+5}{7}}{-\frac{1\times 35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Add 30 and 2 to get 32.
\frac{40\left(-\frac{15}{32}\right)-\frac{\frac{25\times 7+5}{7}}{-\frac{1\times 35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Divide 40 by -\frac{32}{15} by multiplying 40 by the reciprocal of -\frac{32}{15}.
\frac{\frac{40\left(-15\right)}{32}-\frac{\frac{25\times 7+5}{7}}{-\frac{1\times 35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Express 40\left(-\frac{15}{32}\right) as a single fraction.
\frac{\frac{-600}{32}-\frac{\frac{25\times 7+5}{7}}{-\frac{1\times 35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Multiply 40 and -15 to get -600.
\frac{-\frac{75}{4}-\frac{\frac{25\times 7+5}{7}}{-\frac{1\times 35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Reduce the fraction \frac{-600}{32} to lowest terms by extracting and canceling out 8.
\frac{-\frac{75}{4}-\frac{\frac{175+5}{7}}{-\frac{1\times 35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Multiply 25 and 7 to get 175.
\frac{-\frac{75}{4}-\frac{\frac{180}{7}}{-\frac{1\times 35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Add 175 and 5 to get 180.
\frac{-\frac{75}{4}-\frac{\frac{180}{7}}{-\frac{35+1}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Multiply 1 and 35 to get 35.
\frac{-\frac{75}{4}-\frac{\frac{180}{7}}{-\frac{36}{35}}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Add 35 and 1 to get 36.
\frac{-\frac{75}{4}-\frac{180}{7}\left(-\frac{35}{36}\right)}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Divide \frac{180}{7} by -\frac{36}{35} by multiplying \frac{180}{7} by the reciprocal of -\frac{36}{35}.
\frac{-\frac{75}{4}-\frac{180\left(-35\right)}{7\times 36}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Multiply \frac{180}{7} times -\frac{35}{36} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{75}{4}-\frac{-6300}{252}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Do the multiplications in the fraction \frac{180\left(-35\right)}{7\times 36}.
\frac{-\frac{75}{4}-\left(-25\right)}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Divide -6300 by 252 to get -25.
\frac{-\frac{75}{4}+25}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
The opposite of -25 is 25.
\frac{-\frac{75}{4}+\frac{100}{4}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Convert 25 to fraction \frac{100}{4}.
\frac{\frac{-75+100}{4}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Since -\frac{75}{4} and \frac{100}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{25}{4}}{\frac{-\frac{21\times 9+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Add -75 and 100 to get 25.
\frac{\frac{25}{4}}{\frac{-\frac{189+7}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Multiply 21 and 9 to get 189.
\frac{\frac{25}{4}}{\frac{-\frac{196}{9}}{\frac{4\times 3+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Add 189 and 7 to get 196.
\frac{\frac{25}{4}}{\frac{-\frac{196}{9}}{\frac{12+2}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Multiply 4 and 3 to get 12.
\frac{\frac{25}{4}}{\frac{-\frac{196}{9}}{\frac{14}{3}}+1}\left(-\frac{3\times 3+2}{3}\right)
Add 12 and 2 to get 14.
\frac{\frac{25}{4}}{-\frac{196}{9}\times \frac{3}{14}+1}\left(-\frac{3\times 3+2}{3}\right)
Divide -\frac{196}{9} by \frac{14}{3} by multiplying -\frac{196}{9} by the reciprocal of \frac{14}{3}.
\frac{\frac{25}{4}}{\frac{-196\times 3}{9\times 14}+1}\left(-\frac{3\times 3+2}{3}\right)
Multiply -\frac{196}{9} times \frac{3}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{25}{4}}{\frac{-588}{126}+1}\left(-\frac{3\times 3+2}{3}\right)
Do the multiplications in the fraction \frac{-196\times 3}{9\times 14}.
\frac{\frac{25}{4}}{-\frac{14}{3}+1}\left(-\frac{3\times 3+2}{3}\right)
Reduce the fraction \frac{-588}{126} to lowest terms by extracting and canceling out 42.
\frac{\frac{25}{4}}{-\frac{14}{3}+\frac{3}{3}}\left(-\frac{3\times 3+2}{3}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{25}{4}}{\frac{-14+3}{3}}\left(-\frac{3\times 3+2}{3}\right)
Since -\frac{14}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{25}{4}}{-\frac{11}{3}}\left(-\frac{3\times 3+2}{3}\right)
Add -14 and 3 to get -11.
\frac{25}{4}\left(-\frac{3}{11}\right)\left(-\frac{3\times 3+2}{3}\right)
Divide \frac{25}{4} by -\frac{11}{3} by multiplying \frac{25}{4} by the reciprocal of -\frac{11}{3}.
\frac{25\left(-3\right)}{4\times 11}\left(-\frac{3\times 3+2}{3}\right)
Multiply \frac{25}{4} times -\frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{-75}{44}\left(-\frac{3\times 3+2}{3}\right)
Do the multiplications in the fraction \frac{25\left(-3\right)}{4\times 11}.
-\frac{75}{44}\left(-\frac{3\times 3+2}{3}\right)
Fraction \frac{-75}{44} can be rewritten as -\frac{75}{44} by extracting the negative sign.
-\frac{75}{44}\left(-\frac{9+2}{3}\right)
Multiply 3 and 3 to get 9.
-\frac{75}{44}\left(-\frac{11}{3}\right)
Add 9 and 2 to get 11.
\frac{-75\left(-11\right)}{44\times 3}
Multiply -\frac{75}{44} times -\frac{11}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{825}{132}
Do the multiplications in the fraction \frac{-75\left(-11\right)}{44\times 3}.
\frac{25}{4}
Reduce the fraction \frac{825}{132} to lowest terms by extracting and canceling out 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}