Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4,25\times \frac{\left(\frac{64+9}{16}-\left(\frac{2\times 3+1}{3}-\frac{1}{3}\right)\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Multiply 4 and 16 to get 64.
\frac{4,25\times \frac{\left(\frac{73}{16}-\left(\frac{2\times 3+1}{3}-\frac{1}{3}\right)\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Add 64 and 9 to get 73.
\frac{4,25\times \frac{\left(\frac{73}{16}-\left(\frac{6+1}{3}-\frac{1}{3}\right)\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Multiply 2 and 3 to get 6.
\frac{4,25\times \frac{\left(\frac{73}{16}-\left(\frac{7}{3}-\frac{1}{3}\right)\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Add 6 and 1 to get 7.
\frac{4,25\times \frac{\left(\frac{73}{16}-\frac{7-1}{3}\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Since \frac{7}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{4,25\times \frac{\left(\frac{73}{16}-\frac{6}{3}\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Subtract 1 from 7 to get 6.
\frac{4,25\times \frac{\left(\frac{73}{16}-2\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Divide 6 by 3 to get 2.
\frac{4,25\times \frac{\left(\frac{73}{16}-\frac{32}{16}\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Convert 2 to fraction \frac{32}{16}.
\frac{4,25\times \frac{\frac{73-32}{16}\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Since \frac{73}{16} and \frac{32}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{4,25\times \frac{\frac{41}{16}\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Subtract 32 from 73 to get 41.
\frac{4,25\times \frac{\frac{41\times 18}{16\times 41}}{0,45}}{1,4}+\frac{1}{12}
Multiply \frac{41}{16} times \frac{18}{41} by multiplying numerator times numerator and denominator times denominator.
\frac{4,25\times \frac{\frac{18}{16}}{0,45}}{1,4}+\frac{1}{12}
Cancel out 41 in both numerator and denominator.
\frac{4,25\times \frac{\frac{9}{8}}{0,45}}{1,4}+\frac{1}{12}
Reduce the fraction \frac{18}{16} to lowest terms by extracting and canceling out 2.
\frac{4,25\times \frac{9}{8\times 0,45}}{1,4}+\frac{1}{12}
Express \frac{\frac{9}{8}}{0,45} as a single fraction.
\frac{4,25\times \frac{9}{3,6}}{1,4}+\frac{1}{12}
Multiply 8 and 0,45 to get 3,6.
\frac{4,25\times \frac{90}{36}}{1,4}+\frac{1}{12}
Expand \frac{9}{3,6} by multiplying both numerator and the denominator by 10.
\frac{4,25\times \frac{5}{2}}{1,4}+\frac{1}{12}
Reduce the fraction \frac{90}{36} to lowest terms by extracting and canceling out 18.
\frac{\frac{17}{4}\times \frac{5}{2}}{1,4}+\frac{1}{12}
Convert decimal number 4,25 to fraction \frac{425}{100}. Reduce the fraction \frac{425}{100} to lowest terms by extracting and canceling out 25.
\frac{\frac{17\times 5}{4\times 2}}{1,4}+\frac{1}{12}
Multiply \frac{17}{4} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{85}{8}}{1,4}+\frac{1}{12}
Do the multiplications in the fraction \frac{17\times 5}{4\times 2}.
\frac{85}{8\times 1,4}+\frac{1}{12}
Express \frac{\frac{85}{8}}{1,4} as a single fraction.
\frac{85}{11,2}+\frac{1}{12}
Multiply 8 and 1,4 to get 11,2.
\frac{850}{112}+\frac{1}{12}
Expand \frac{85}{11,2} by multiplying both numerator and the denominator by 10.
\frac{425}{56}+\frac{1}{12}
Reduce the fraction \frac{850}{112} to lowest terms by extracting and canceling out 2.
\frac{1275}{168}+\frac{14}{168}
Least common multiple of 56 and 12 is 168. Convert \frac{425}{56} and \frac{1}{12} to fractions with denominator 168.
\frac{1275+14}{168}
Since \frac{1275}{168} and \frac{14}{168} have the same denominator, add them by adding their numerators.
\frac{1289}{168}
Add 1275 and 14 to get 1289.