( 4,25 \frac { ( 4 \frac { 9 } { 16 } - ( 2 \frac { 1 } { 3 } - \frac { 1 } { 3 } ) ) \cdot \frac { 18 } { 41 } } { 0,45 } ) : 1,4 + \frac { 1 } { 12 }
Evaluate
\frac{1289}{168}\approx 7,672619048
Factor
\frac{1289}{3 \cdot 7 \cdot 2 ^ {3}} = 7\frac{113}{168} = 7.6726190476190474
Share
Copied to clipboard
\frac{4,25\times \frac{\left(\frac{64+9}{16}-\left(\frac{2\times 3+1}{3}-\frac{1}{3}\right)\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Multiply 4 and 16 to get 64.
\frac{4,25\times \frac{\left(\frac{73}{16}-\left(\frac{2\times 3+1}{3}-\frac{1}{3}\right)\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Add 64 and 9 to get 73.
\frac{4,25\times \frac{\left(\frac{73}{16}-\left(\frac{6+1}{3}-\frac{1}{3}\right)\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Multiply 2 and 3 to get 6.
\frac{4,25\times \frac{\left(\frac{73}{16}-\left(\frac{7}{3}-\frac{1}{3}\right)\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Add 6 and 1 to get 7.
\frac{4,25\times \frac{\left(\frac{73}{16}-\frac{7-1}{3}\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Since \frac{7}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{4,25\times \frac{\left(\frac{73}{16}-\frac{6}{3}\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Subtract 1 from 7 to get 6.
\frac{4,25\times \frac{\left(\frac{73}{16}-2\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Divide 6 by 3 to get 2.
\frac{4,25\times \frac{\left(\frac{73}{16}-\frac{32}{16}\right)\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Convert 2 to fraction \frac{32}{16}.
\frac{4,25\times \frac{\frac{73-32}{16}\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Since \frac{73}{16} and \frac{32}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{4,25\times \frac{\frac{41}{16}\times \frac{18}{41}}{0,45}}{1,4}+\frac{1}{12}
Subtract 32 from 73 to get 41.
\frac{4,25\times \frac{\frac{41\times 18}{16\times 41}}{0,45}}{1,4}+\frac{1}{12}
Multiply \frac{41}{16} times \frac{18}{41} by multiplying numerator times numerator and denominator times denominator.
\frac{4,25\times \frac{\frac{18}{16}}{0,45}}{1,4}+\frac{1}{12}
Cancel out 41 in both numerator and denominator.
\frac{4,25\times \frac{\frac{9}{8}}{0,45}}{1,4}+\frac{1}{12}
Reduce the fraction \frac{18}{16} to lowest terms by extracting and canceling out 2.
\frac{4,25\times \frac{9}{8\times 0,45}}{1,4}+\frac{1}{12}
Express \frac{\frac{9}{8}}{0,45} as a single fraction.
\frac{4,25\times \frac{9}{3,6}}{1,4}+\frac{1}{12}
Multiply 8 and 0,45 to get 3,6.
\frac{4,25\times \frac{90}{36}}{1,4}+\frac{1}{12}
Expand \frac{9}{3,6} by multiplying both numerator and the denominator by 10.
\frac{4,25\times \frac{5}{2}}{1,4}+\frac{1}{12}
Reduce the fraction \frac{90}{36} to lowest terms by extracting and canceling out 18.
\frac{\frac{17}{4}\times \frac{5}{2}}{1,4}+\frac{1}{12}
Convert decimal number 4,25 to fraction \frac{425}{100}. Reduce the fraction \frac{425}{100} to lowest terms by extracting and canceling out 25.
\frac{\frac{17\times 5}{4\times 2}}{1,4}+\frac{1}{12}
Multiply \frac{17}{4} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{85}{8}}{1,4}+\frac{1}{12}
Do the multiplications in the fraction \frac{17\times 5}{4\times 2}.
\frac{85}{8\times 1,4}+\frac{1}{12}
Express \frac{\frac{85}{8}}{1,4} as a single fraction.
\frac{85}{11,2}+\frac{1}{12}
Multiply 8 and 1,4 to get 11,2.
\frac{850}{112}+\frac{1}{12}
Expand \frac{85}{11,2} by multiplying both numerator and the denominator by 10.
\frac{425}{56}+\frac{1}{12}
Reduce the fraction \frac{850}{112} to lowest terms by extracting and canceling out 2.
\frac{1275}{168}+\frac{14}{168}
Least common multiple of 56 and 12 is 168. Convert \frac{425}{56} and \frac{1}{12} to fractions with denominator 168.
\frac{1275+14}{168}
Since \frac{1275}{168} and \frac{14}{168} have the same denominator, add them by adding their numerators.
\frac{1289}{168}
Add 1275 and 14 to get 1289.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}