Skip to main content
Evaluate (complex solution)
true
Tick mark Image
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4x-y}{2x+3y}=\frac{4x-y}{2x+3y}\text{ and }\frac{4x-y}{2x+3y}=\frac{\left(4x-y\right)y}{y\left(2x+3y\right)}
Divide \frac{4x-y}{y} by \frac{2x+3y}{y} by multiplying \frac{4x-y}{y} by the reciprocal of \frac{2x+3y}{y}.
\frac{4x-y}{2x+3y}=\frac{4x-y}{2x+3y}\text{ and }\frac{4x-y}{2x+3y}=\frac{4x-y}{2x+3y}
Cancel out y in both numerator and denominator.
\frac{4x-y}{2x+3y}-\frac{4x-y}{2x+3y}=0\text{ and }\frac{4x-y}{2x+3y}=\frac{4x-y}{2x+3y}
Subtract \frac{4x-y}{2x+3y} from both sides.
0=0\text{ and }\frac{4x-y}{2x+3y}=\frac{4x-y}{2x+3y}
Subtract \frac{4x-y}{2x+3y} from \frac{4x-y}{2x+3y} to get 0.
\text{true}\text{ and }\frac{4x-y}{2x+3y}=\frac{4x-y}{2x+3y}
Compare 0 and 0.
\text{true}\text{ and }\frac{4x-y}{2x+3y}-\frac{4x-y}{2x+3y}=0
Subtract \frac{4x-y}{2x+3y} from both sides.
\text{true}\text{ and }0=0
Subtract \frac{4x-y}{2x+3y} from \frac{4x-y}{2x+3y} to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.