Solve for d
d=-\frac{11x^{2}-18x-215}{4\left(x-2\right)}
x\neq 2
Solve for x
x=\frac{\sqrt{4d^{2}+52d+2446}-2d+9}{11}
x=\frac{-\sqrt{4d^{2}+52d+2446}-2d+9}{11}
Graph
Share
Copied to clipboard
12x^{2}+12dx-24x-24d+4x+10+\left(3x+5\right)\left(7x-23\right)=540
Use the distributive property to multiply 4x-8 by 3x+3d.
12x^{2}+12dx-20x-24d+10+\left(3x+5\right)\left(7x-23\right)=540
Combine -24x and 4x to get -20x.
12x^{2}+12dx-20x-24d+10+21x^{2}-34x-115=540
Use the distributive property to multiply 3x+5 by 7x-23 and combine like terms.
33x^{2}+12dx-20x-24d+10-34x-115=540
Combine 12x^{2} and 21x^{2} to get 33x^{2}.
33x^{2}+12dx-54x-24d+10-115=540
Combine -20x and -34x to get -54x.
33x^{2}+12dx-54x-24d-105=540
Subtract 115 from 10 to get -105.
12dx-54x-24d-105=540-33x^{2}
Subtract 33x^{2} from both sides.
12dx-24d-105=540-33x^{2}+54x
Add 54x to both sides.
12dx-24d=540-33x^{2}+54x+105
Add 105 to both sides.
12dx-24d=645-33x^{2}+54x
Add 540 and 105 to get 645.
\left(12x-24\right)d=645-33x^{2}+54x
Combine all terms containing d.
\left(12x-24\right)d=645+54x-33x^{2}
The equation is in standard form.
\frac{\left(12x-24\right)d}{12x-24}=\frac{645+54x-33x^{2}}{12x-24}
Divide both sides by 12x-24.
d=\frac{645+54x-33x^{2}}{12x-24}
Dividing by 12x-24 undoes the multiplication by 12x-24.
d=\frac{215+18x-11x^{2}}{4\left(x-2\right)}
Divide 645-33x^{2}+54x by 12x-24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}