Solve for x
x=-4
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Share
Copied to clipboard
8x^{2}-30x+28=84+4x^{2}-32x
Use the distributive property to multiply 4x-7 by 2x-4 and combine like terms.
8x^{2}-30x+28-84=4x^{2}-32x
Subtract 84 from both sides.
8x^{2}-30x-56=4x^{2}-32x
Subtract 84 from 28 to get -56.
8x^{2}-30x-56-4x^{2}=-32x
Subtract 4x^{2} from both sides.
4x^{2}-30x-56=-32x
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}-30x-56+32x=0
Add 32x to both sides.
4x^{2}+2x-56=0
Combine -30x and 32x to get 2x.
2x^{2}+x-28=0
Divide both sides by 2.
a+b=1 ab=2\left(-28\right)=-56
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-28. To find a and b, set up a system to be solved.
-1,56 -2,28 -4,14 -7,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -56.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
Calculate the sum for each pair.
a=-7 b=8
The solution is the pair that gives sum 1.
\left(2x^{2}-7x\right)+\left(8x-28\right)
Rewrite 2x^{2}+x-28 as \left(2x^{2}-7x\right)+\left(8x-28\right).
x\left(2x-7\right)+4\left(2x-7\right)
Factor out x in the first and 4 in the second group.
\left(2x-7\right)\left(x+4\right)
Factor out common term 2x-7 by using distributive property.
x=\frac{7}{2} x=-4
To find equation solutions, solve 2x-7=0 and x+4=0.
8x^{2}-30x+28=84+4x^{2}-32x
Use the distributive property to multiply 4x-7 by 2x-4 and combine like terms.
8x^{2}-30x+28-84=4x^{2}-32x
Subtract 84 from both sides.
8x^{2}-30x-56=4x^{2}-32x
Subtract 84 from 28 to get -56.
8x^{2}-30x-56-4x^{2}=-32x
Subtract 4x^{2} from both sides.
4x^{2}-30x-56=-32x
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}-30x-56+32x=0
Add 32x to both sides.
4x^{2}+2x-56=0
Combine -30x and 32x to get 2x.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-56\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 2 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 4\left(-56\right)}}{2\times 4}
Square 2.
x=\frac{-2±\sqrt{4-16\left(-56\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-2±\sqrt{4+896}}{2\times 4}
Multiply -16 times -56.
x=\frac{-2±\sqrt{900}}{2\times 4}
Add 4 to 896.
x=\frac{-2±30}{2\times 4}
Take the square root of 900.
x=\frac{-2±30}{8}
Multiply 2 times 4.
x=\frac{28}{8}
Now solve the equation x=\frac{-2±30}{8} when ± is plus. Add -2 to 30.
x=\frac{7}{2}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{32}{8}
Now solve the equation x=\frac{-2±30}{8} when ± is minus. Subtract 30 from -2.
x=-4
Divide -32 by 8.
x=\frac{7}{2} x=-4
The equation is now solved.
8x^{2}-30x+28=84+4x^{2}-32x
Use the distributive property to multiply 4x-7 by 2x-4 and combine like terms.
8x^{2}-30x+28-4x^{2}=84-32x
Subtract 4x^{2} from both sides.
4x^{2}-30x+28=84-32x
Combine 8x^{2} and -4x^{2} to get 4x^{2}.
4x^{2}-30x+28+32x=84
Add 32x to both sides.
4x^{2}+2x+28=84
Combine -30x and 32x to get 2x.
4x^{2}+2x=84-28
Subtract 28 from both sides.
4x^{2}+2x=56
Subtract 28 from 84 to get 56.
\frac{4x^{2}+2x}{4}=\frac{56}{4}
Divide both sides by 4.
x^{2}+\frac{2}{4}x=\frac{56}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{1}{2}x=\frac{56}{4}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{2}x=14
Divide 56 by 4.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=14+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=14+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{225}{16}
Add 14 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{225}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{15}{4} x+\frac{1}{4}=-\frac{15}{4}
Simplify.
x=\frac{7}{2} x=-4
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}