Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-24x+9=64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9-64=0
Subtract 64 from both sides.
16x^{2}-24x-55=0
Subtract 64 from 9 to get -55.
a+b=-24 ab=16\left(-55\right)=-880
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 16x^{2}+ax+bx-55. To find a and b, set up a system to be solved.
1,-880 2,-440 4,-220 5,-176 8,-110 10,-88 11,-80 16,-55 20,-44 22,-40
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -880.
1-880=-879 2-440=-438 4-220=-216 5-176=-171 8-110=-102 10-88=-78 11-80=-69 16-55=-39 20-44=-24 22-40=-18
Calculate the sum for each pair.
a=-44 b=20
The solution is the pair that gives sum -24.
\left(16x^{2}-44x\right)+\left(20x-55\right)
Rewrite 16x^{2}-24x-55 as \left(16x^{2}-44x\right)+\left(20x-55\right).
4x\left(4x-11\right)+5\left(4x-11\right)
Factor out 4x in the first and 5 in the second group.
\left(4x-11\right)\left(4x+5\right)
Factor out common term 4x-11 by using distributive property.
x=\frac{11}{4} x=-\frac{5}{4}
To find equation solutions, solve 4x-11=0 and 4x+5=0.
16x^{2}-24x+9=64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x+9-64=0
Subtract 64 from both sides.
16x^{2}-24x-55=0
Subtract 64 from 9 to get -55.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 16\left(-55\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -24 for b, and -55 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 16\left(-55\right)}}{2\times 16}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-64\left(-55\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-24\right)±\sqrt{576+3520}}{2\times 16}
Multiply -64 times -55.
x=\frac{-\left(-24\right)±\sqrt{4096}}{2\times 16}
Add 576 to 3520.
x=\frac{-\left(-24\right)±64}{2\times 16}
Take the square root of 4096.
x=\frac{24±64}{2\times 16}
The opposite of -24 is 24.
x=\frac{24±64}{32}
Multiply 2 times 16.
x=\frac{88}{32}
Now solve the equation x=\frac{24±64}{32} when ± is plus. Add 24 to 64.
x=\frac{11}{4}
Reduce the fraction \frac{88}{32} to lowest terms by extracting and canceling out 8.
x=-\frac{40}{32}
Now solve the equation x=\frac{24±64}{32} when ± is minus. Subtract 64 from 24.
x=-\frac{5}{4}
Reduce the fraction \frac{-40}{32} to lowest terms by extracting and canceling out 8.
x=\frac{11}{4} x=-\frac{5}{4}
The equation is now solved.
16x^{2}-24x+9=64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-24x=64-9
Subtract 9 from both sides.
16x^{2}-24x=55
Subtract 9 from 64 to get 55.
\frac{16x^{2}-24x}{16}=\frac{55}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{24}{16}\right)x=\frac{55}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{3}{2}x=\frac{55}{16}
Reduce the fraction \frac{-24}{16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{55}{16}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{55+9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=4
Add \frac{55}{16} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=4
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-\frac{3}{4}=2 x-\frac{3}{4}=-2
Simplify.
x=\frac{11}{4} x=-\frac{5}{4}
Add \frac{3}{4} to both sides of the equation.