Solve for x
x=\frac{\sqrt{7}+5}{9}\approx 0.849527923
x=\frac{5-\sqrt{7}}{9}\approx 0.261583188
Graph
Share
Copied to clipboard
\left(4x\right)^{2}-1=\left(5x-1\right)^{2}
Consider \left(4x-1\right)\left(4x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4^{2}x^{2}-1=\left(5x-1\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-1=\left(5x-1\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-1=25x^{2}-10x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-1\right)^{2}.
16x^{2}-1-25x^{2}=-10x+1
Subtract 25x^{2} from both sides.
-9x^{2}-1=-10x+1
Combine 16x^{2} and -25x^{2} to get -9x^{2}.
-9x^{2}-1+10x=1
Add 10x to both sides.
-9x^{2}-1+10x-1=0
Subtract 1 from both sides.
-9x^{2}-2+10x=0
Subtract 1 from -1 to get -2.
-9x^{2}+10x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-9\right)\left(-2\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 10 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-9\right)\left(-2\right)}}{2\left(-9\right)}
Square 10.
x=\frac{-10±\sqrt{100+36\left(-2\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-10±\sqrt{100-72}}{2\left(-9\right)}
Multiply 36 times -2.
x=\frac{-10±\sqrt{28}}{2\left(-9\right)}
Add 100 to -72.
x=\frac{-10±2\sqrt{7}}{2\left(-9\right)}
Take the square root of 28.
x=\frac{-10±2\sqrt{7}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{7}-10}{-18}
Now solve the equation x=\frac{-10±2\sqrt{7}}{-18} when ± is plus. Add -10 to 2\sqrt{7}.
x=\frac{5-\sqrt{7}}{9}
Divide -10+2\sqrt{7} by -18.
x=\frac{-2\sqrt{7}-10}{-18}
Now solve the equation x=\frac{-10±2\sqrt{7}}{-18} when ± is minus. Subtract 2\sqrt{7} from -10.
x=\frac{\sqrt{7}+5}{9}
Divide -10-2\sqrt{7} by -18.
x=\frac{5-\sqrt{7}}{9} x=\frac{\sqrt{7}+5}{9}
The equation is now solved.
\left(4x\right)^{2}-1=\left(5x-1\right)^{2}
Consider \left(4x-1\right)\left(4x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4^{2}x^{2}-1=\left(5x-1\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}-1=\left(5x-1\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}-1=25x^{2}-10x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-1\right)^{2}.
16x^{2}-1-25x^{2}=-10x+1
Subtract 25x^{2} from both sides.
-9x^{2}-1=-10x+1
Combine 16x^{2} and -25x^{2} to get -9x^{2}.
-9x^{2}-1+10x=1
Add 10x to both sides.
-9x^{2}+10x=1+1
Add 1 to both sides.
-9x^{2}+10x=2
Add 1 and 1 to get 2.
\frac{-9x^{2}+10x}{-9}=\frac{2}{-9}
Divide both sides by -9.
x^{2}+\frac{10}{-9}x=\frac{2}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{10}{9}x=\frac{2}{-9}
Divide 10 by -9.
x^{2}-\frac{10}{9}x=-\frac{2}{9}
Divide 2 by -9.
x^{2}-\frac{10}{9}x+\left(-\frac{5}{9}\right)^{2}=-\frac{2}{9}+\left(-\frac{5}{9}\right)^{2}
Divide -\frac{10}{9}, the coefficient of the x term, by 2 to get -\frac{5}{9}. Then add the square of -\frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{9}x+\frac{25}{81}=-\frac{2}{9}+\frac{25}{81}
Square -\frac{5}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{9}x+\frac{25}{81}=\frac{7}{81}
Add -\frac{2}{9} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{9}\right)^{2}=\frac{7}{81}
Factor x^{2}-\frac{10}{9}x+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{9}\right)^{2}}=\sqrt{\frac{7}{81}}
Take the square root of both sides of the equation.
x-\frac{5}{9}=\frac{\sqrt{7}}{9} x-\frac{5}{9}=-\frac{\sqrt{7}}{9}
Simplify.
x=\frac{\sqrt{7}+5}{9} x=\frac{5-\sqrt{7}}{9}
Add \frac{5}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}