Evaluate
24x+7
Expand
24x+7
Graph
Share
Copied to clipboard
\left(4x\right)^{2}-1-\left(4x+1-4\right)^{2}+\left(4-1\right)^{2}+2\times 4
Consider \left(4x-1\right)\left(4x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4^{2}x^{2}-1-\left(4x+1-4\right)^{2}+\left(4-1\right)^{2}+2\times 4
Expand \left(4x\right)^{2}.
16x^{2}-1-\left(4x+1-4\right)^{2}+\left(4-1\right)^{2}+2\times 4
Calculate 4 to the power of 2 and get 16.
16x^{2}-1-\left(4x-3\right)^{2}+\left(4-1\right)^{2}+2\times 4
Subtract 4 from 1 to get -3.
16x^{2}-1-\left(16x^{2}-24x+9\right)+\left(4-1\right)^{2}+2\times 4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-1-16x^{2}+24x-9+\left(4-1\right)^{2}+2\times 4
To find the opposite of 16x^{2}-24x+9, find the opposite of each term.
-1+24x-9+\left(4-1\right)^{2}+2\times 4
Combine 16x^{2} and -16x^{2} to get 0.
-10+24x+\left(4-1\right)^{2}+2\times 4
Subtract 9 from -1 to get -10.
-10+24x+3^{2}+2\times 4
Subtract 1 from 4 to get 3.
-10+24x+9+2\times 4
Calculate 3 to the power of 2 and get 9.
-1+24x+2\times 4
Add -10 and 9 to get -1.
-1+24x+8
Multiply 2 and 4 to get 8.
7+24x
Add -1 and 8 to get 7.
\left(4x\right)^{2}-1-\left(4x+1-4\right)^{2}+\left(4-1\right)^{2}+2\times 4
Consider \left(4x-1\right)\left(4x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4^{2}x^{2}-1-\left(4x+1-4\right)^{2}+\left(4-1\right)^{2}+2\times 4
Expand \left(4x\right)^{2}.
16x^{2}-1-\left(4x+1-4\right)^{2}+\left(4-1\right)^{2}+2\times 4
Calculate 4 to the power of 2 and get 16.
16x^{2}-1-\left(4x-3\right)^{2}+\left(4-1\right)^{2}+2\times 4
Subtract 4 from 1 to get -3.
16x^{2}-1-\left(16x^{2}-24x+9\right)+\left(4-1\right)^{2}+2\times 4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
16x^{2}-1-16x^{2}+24x-9+\left(4-1\right)^{2}+2\times 4
To find the opposite of 16x^{2}-24x+9, find the opposite of each term.
-1+24x-9+\left(4-1\right)^{2}+2\times 4
Combine 16x^{2} and -16x^{2} to get 0.
-10+24x+\left(4-1\right)^{2}+2\times 4
Subtract 9 from -1 to get -10.
-10+24x+3^{2}+2\times 4
Subtract 1 from 4 to get 3.
-10+24x+9+2\times 4
Calculate 3 to the power of 2 and get 9.
-1+24x+2\times 4
Add -10 and 9 to get -1.
-1+24x+8
Multiply 2 and 4 to get 8.
7+24x
Add -1 and 8 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}