Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4^{2}x^{2}+\left(3x\right)^{2}=37^{2}
Expand \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=37^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}+3^{2}x^{2}=37^{2}
Expand \left(3x\right)^{2}.
16x^{2}+9x^{2}=37^{2}
Calculate 3 to the power of 2 and get 9.
25x^{2}=37^{2}
Combine 16x^{2} and 9x^{2} to get 25x^{2}.
25x^{2}=1369
Calculate 37 to the power of 2 and get 1369.
25x^{2}-1369=0
Subtract 1369 from both sides.
\left(5x-37\right)\left(5x+37\right)=0
Consider 25x^{2}-1369. Rewrite 25x^{2}-1369 as \left(5x\right)^{2}-37^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{37}{5} x=-\frac{37}{5}
To find equation solutions, solve 5x-37=0 and 5x+37=0.
4^{2}x^{2}+\left(3x\right)^{2}=37^{2}
Expand \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=37^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}+3^{2}x^{2}=37^{2}
Expand \left(3x\right)^{2}.
16x^{2}+9x^{2}=37^{2}
Calculate 3 to the power of 2 and get 9.
25x^{2}=37^{2}
Combine 16x^{2} and 9x^{2} to get 25x^{2}.
25x^{2}=1369
Calculate 37 to the power of 2 and get 1369.
x^{2}=\frac{1369}{25}
Divide both sides by 25.
x=\frac{37}{5} x=-\frac{37}{5}
Take the square root of both sides of the equation.
4^{2}x^{2}+\left(3x\right)^{2}=37^{2}
Expand \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=37^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}+3^{2}x^{2}=37^{2}
Expand \left(3x\right)^{2}.
16x^{2}+9x^{2}=37^{2}
Calculate 3 to the power of 2 and get 9.
25x^{2}=37^{2}
Combine 16x^{2} and 9x^{2} to get 25x^{2}.
25x^{2}=1369
Calculate 37 to the power of 2 and get 1369.
25x^{2}-1369=0
Subtract 1369 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-1369\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 0 for b, and -1369 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\left(-1369\right)}}{2\times 25}
Square 0.
x=\frac{0±\sqrt{-100\left(-1369\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{0±\sqrt{136900}}{2\times 25}
Multiply -100 times -1369.
x=\frac{0±370}{2\times 25}
Take the square root of 136900.
x=\frac{0±370}{50}
Multiply 2 times 25.
x=\frac{37}{5}
Now solve the equation x=\frac{0±370}{50} when ± is plus. Reduce the fraction \frac{370}{50} to lowest terms by extracting and canceling out 10.
x=-\frac{37}{5}
Now solve the equation x=\frac{0±370}{50} when ± is minus. Reduce the fraction \frac{-370}{50} to lowest terms by extracting and canceling out 10.
x=\frac{37}{5} x=-\frac{37}{5}
The equation is now solved.