Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4^{2}x^{2}+\left(3x\right)^{2}=25^{2}
Expand \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=25^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}+3^{2}x^{2}=25^{2}
Expand \left(3x\right)^{2}.
16x^{2}+9x^{2}=25^{2}
Calculate 3 to the power of 2 and get 9.
25x^{2}=25^{2}
Combine 16x^{2} and 9x^{2} to get 25x^{2}.
25x^{2}=625
Calculate 25 to the power of 2 and get 625.
25x^{2}-625=0
Subtract 625 from both sides.
x^{2}-25=0
Divide both sides by 25.
\left(x-5\right)\left(x+5\right)=0
Consider x^{2}-25. Rewrite x^{2}-25 as x^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=5 x=-5
To find equation solutions, solve x-5=0 and x+5=0.
4^{2}x^{2}+\left(3x\right)^{2}=25^{2}
Expand \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=25^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}+3^{2}x^{2}=25^{2}
Expand \left(3x\right)^{2}.
16x^{2}+9x^{2}=25^{2}
Calculate 3 to the power of 2 and get 9.
25x^{2}=25^{2}
Combine 16x^{2} and 9x^{2} to get 25x^{2}.
25x^{2}=625
Calculate 25 to the power of 2 and get 625.
x^{2}=\frac{625}{25}
Divide both sides by 25.
x^{2}=25
Divide 625 by 25 to get 25.
x=5 x=-5
Take the square root of both sides of the equation.
4^{2}x^{2}+\left(3x\right)^{2}=25^{2}
Expand \left(4x\right)^{2}.
16x^{2}+\left(3x\right)^{2}=25^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}+3^{2}x^{2}=25^{2}
Expand \left(3x\right)^{2}.
16x^{2}+9x^{2}=25^{2}
Calculate 3 to the power of 2 and get 9.
25x^{2}=25^{2}
Combine 16x^{2} and 9x^{2} to get 25x^{2}.
25x^{2}=625
Calculate 25 to the power of 2 and get 625.
25x^{2}-625=0
Subtract 625 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-625\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 0 for b, and -625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\left(-625\right)}}{2\times 25}
Square 0.
x=\frac{0±\sqrt{-100\left(-625\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{0±\sqrt{62500}}{2\times 25}
Multiply -100 times -625.
x=\frac{0±250}{2\times 25}
Take the square root of 62500.
x=\frac{0±250}{50}
Multiply 2 times 25.
x=5
Now solve the equation x=\frac{0±250}{50} when ± is plus. Divide 250 by 50.
x=-5
Now solve the equation x=\frac{0±250}{50} when ± is minus. Divide -250 by 50.
x=5 x=-5
The equation is now solved.