Evaluate
64x^{6}
Expand
64x^{6}
Share
Copied to clipboard
64\left(x^{2}\right)^{3}-48\left(x^{2}\right)^{2}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(4x^{2}-y\right)^{2}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(4x^{2}-y\right)^{3}.
64x^{6}-48\left(x^{2}\right)^{2}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(4x^{2}-y\right)^{2}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(4x^{2}-y\right)^{2}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(16\left(x^{2}\right)^{2}-8x^{2}y+y^{2}\right)-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x^{2}-y\right)^{2}.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(16x^{4}-8x^{2}y+y^{2}\right)-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
Use the distributive property to multiply -3y by 16x^{4}-8x^{2}y+y^{2}.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}-3y^{2}\left(2x-y\right)\left(2x+y\right)\right)+3y^{4}-2y^{3}
To find the opposite of -48yx^{4}+24y^{2}x^{2}-3y^{3}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}, find the opposite of each term.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}-3y^{2}\left(2x-y\right)\left(2x+y\right)\right)+3y^{4}
Combine -y^{3} and -2y^{3} to get -3y^{3}.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}+\left(-6y^{2}x+3y^{3}\right)\left(2x+y\right)\right)+3y^{4}
Use the distributive property to multiply -3y^{2} by 2x-y.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}-12y^{2}x^{2}+3y^{4}\right)+3y^{4}
Use the distributive property to multiply -6y^{2}x+3y^{3} by 2x+y and combine like terms.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}-\left(-48yx^{4}+12y^{2}x^{2}-3y^{3}+3y^{4}\right)+3y^{4}
Combine 24y^{2}x^{2} and -12y^{2}x^{2} to get 12y^{2}x^{2}.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}+48yx^{4}-12y^{2}x^{2}+3y^{3}-3y^{4}+3y^{4}
To find the opposite of -48yx^{4}+12y^{2}x^{2}-3y^{3}+3y^{4}, find the opposite of each term.
64x^{6}+12x^{2}y^{2}-3y^{3}-12y^{2}x^{2}+3y^{3}-3y^{4}+3y^{4}
Combine -48x^{4}y and 48yx^{4} to get 0.
64x^{6}-3y^{3}+3y^{3}-3y^{4}+3y^{4}
Combine 12x^{2}y^{2} and -12y^{2}x^{2} to get 0.
64x^{6}-3y^{4}+3y^{4}
Combine -3y^{3} and 3y^{3} to get 0.
64x^{6}
Combine -3y^{4} and 3y^{4} to get 0.
64\left(x^{2}\right)^{3}-48\left(x^{2}\right)^{2}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(4x^{2}-y\right)^{2}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(4x^{2}-y\right)^{3}.
64x^{6}-48\left(x^{2}\right)^{2}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(4x^{2}-y\right)^{2}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(4x^{2}-y\right)^{2}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(16\left(x^{2}\right)^{2}-8x^{2}y+y^{2}\right)-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x^{2}-y\right)^{2}.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-3y\left(16x^{4}-8x^{2}y+y^{2}\right)-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}\right)-2y^{3}
Use the distributive property to multiply -3y by 16x^{4}-8x^{2}y+y^{2}.
64x^{6}-48x^{4}y+12x^{2}y^{2}-y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}-3y^{2}\left(2x-y\right)\left(2x+y\right)\right)+3y^{4}-2y^{3}
To find the opposite of -48yx^{4}+24y^{2}x^{2}-3y^{3}-3y^{2}\left(2x-y\right)\left(2x+y\right)-3y^{4}, find the opposite of each term.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}-3y^{2}\left(2x-y\right)\left(2x+y\right)\right)+3y^{4}
Combine -y^{3} and -2y^{3} to get -3y^{3}.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}+\left(-6y^{2}x+3y^{3}\right)\left(2x+y\right)\right)+3y^{4}
Use the distributive property to multiply -3y^{2} by 2x-y.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}-\left(-48yx^{4}+24y^{2}x^{2}-3y^{3}-12y^{2}x^{2}+3y^{4}\right)+3y^{4}
Use the distributive property to multiply -6y^{2}x+3y^{3} by 2x+y and combine like terms.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}-\left(-48yx^{4}+12y^{2}x^{2}-3y^{3}+3y^{4}\right)+3y^{4}
Combine 24y^{2}x^{2} and -12y^{2}x^{2} to get 12y^{2}x^{2}.
64x^{6}-48x^{4}y+12x^{2}y^{2}-3y^{3}+48yx^{4}-12y^{2}x^{2}+3y^{3}-3y^{4}+3y^{4}
To find the opposite of -48yx^{4}+12y^{2}x^{2}-3y^{3}+3y^{4}, find the opposite of each term.
64x^{6}+12x^{2}y^{2}-3y^{3}-12y^{2}x^{2}+3y^{3}-3y^{4}+3y^{4}
Combine -48x^{4}y and 48yx^{4} to get 0.
64x^{6}-3y^{3}+3y^{3}-3y^{4}+3y^{4}
Combine 12x^{2}y^{2} and -12y^{2}x^{2} to get 0.
64x^{6}-3y^{4}+3y^{4}
Combine -3y^{3} and 3y^{3} to get 0.
64x^{6}
Combine -3y^{4} and 3y^{4} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}