Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-7x+3-2x-5
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
6x^{2}-9x+3-5
Combine -7x and -2x to get -9x.
6x^{2}-9x-2
Subtract 5 from 3 to get -2.
factor(6x^{2}-7x+3-2x-5)
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
factor(6x^{2}-9x+3-5)
Combine -7x and -2x to get -9x.
factor(6x^{2}-9x-2)
Subtract 5 from 3 to get -2.
6x^{2}-9x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 6\left(-2\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 6\left(-2\right)}}{2\times 6}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-24\left(-2\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-9\right)±\sqrt{81+48}}{2\times 6}
Multiply -24 times -2.
x=\frac{-\left(-9\right)±\sqrt{129}}{2\times 6}
Add 81 to 48.
x=\frac{9±\sqrt{129}}{2\times 6}
The opposite of -9 is 9.
x=\frac{9±\sqrt{129}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{129}+9}{12}
Now solve the equation x=\frac{9±\sqrt{129}}{12} when ± is plus. Add 9 to \sqrt{129}.
x=\frac{\sqrt{129}}{12}+\frac{3}{4}
Divide 9+\sqrt{129} by 12.
x=\frac{9-\sqrt{129}}{12}
Now solve the equation x=\frac{9±\sqrt{129}}{12} when ± is minus. Subtract \sqrt{129} from 9.
x=-\frac{\sqrt{129}}{12}+\frac{3}{4}
Divide 9-\sqrt{129} by 12.
6x^{2}-9x-2=6\left(x-\left(\frac{\sqrt{129}}{12}+\frac{3}{4}\right)\right)\left(x-\left(-\frac{\sqrt{129}}{12}+\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{4}+\frac{\sqrt{129}}{12} for x_{1} and \frac{3}{4}-\frac{\sqrt{129}}{12} for x_{2}.