Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4^{2}\left(x^{2}\right)^{2}+91x^{2}-225=0
Expand \left(4x^{2}\right)^{2}.
4^{2}x^{4}+91x^{2}-225=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16x^{4}+91x^{2}-225=0
Calculate 4 to the power of 2 and get 16.
16t^{2}+91t-225=0
Substitute t for x^{2}.
t=\frac{-91±\sqrt{91^{2}-4\times 16\left(-225\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 91 for b, and -225 for c in the quadratic formula.
t=\frac{-91±\sqrt{22681}}{32}
Do the calculations.
t=\frac{\sqrt{22681}-91}{32} t=\frac{-\sqrt{22681}-91}{32}
Solve the equation t=\frac{-91±\sqrt{22681}}{32} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{22681}-91}{32}} x=\sqrt{\frac{\sqrt{22681}-91}{32}} x=-i\sqrt{\frac{\sqrt{22681}+91}{32}} x=i\sqrt{\frac{\sqrt{22681}+91}{32}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
4^{2}\left(x^{2}\right)^{2}+91x^{2}-225=0
Expand \left(4x^{2}\right)^{2}.
4^{2}x^{4}+91x^{2}-225=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16x^{4}+91x^{2}-225=0
Calculate 4 to the power of 2 and get 16.
16t^{2}+91t-225=0
Substitute t for x^{2}.
t=\frac{-91±\sqrt{91^{2}-4\times 16\left(-225\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 91 for b, and -225 for c in the quadratic formula.
t=\frac{-91±\sqrt{22681}}{32}
Do the calculations.
t=\frac{\sqrt{22681}-91}{32} t=\frac{-\sqrt{22681}-91}{32}
Solve the equation t=\frac{-91±\sqrt{22681}}{32} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{22681}-91}{8}}}{2} x=-\frac{\sqrt{\frac{\sqrt{22681}-91}{8}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.