Solve for x (complex solution)
x=-\frac{\sqrt{6}i}{3}\approx -0-0.816496581i
x=\frac{\sqrt{6}i}{3}\approx 0.816496581i
x=1
x=-1
Solve for x
x=-1
x=1
Graph
Quiz
Quadratic Equation
5 problems similar to:
( 4 x + x ) ^ { 2 } = ( x + \frac { 4 } { x } ) ^ { 2 }
Share
Copied to clipboard
\left(5x\right)^{2}=\left(x+\frac{4}{x}\right)^{2}
Combine 4x and x to get 5x.
5^{2}x^{2}=\left(x+\frac{4}{x}\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}=\left(x+\frac{4}{x}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}=\left(\frac{xx}{x}+\frac{4}{x}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
25x^{2}=\left(\frac{xx+4}{x}\right)^{2}
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, add them by adding their numerators.
25x^{2}=\left(\frac{x^{2}+4}{x}\right)^{2}
Do the multiplications in xx+4.
25x^{2}=\frac{\left(x^{2}+4\right)^{2}}{x^{2}}
To raise \frac{x^{2}+4}{x} to a power, raise both numerator and denominator to the power and then divide.
25x^{2}=\frac{\left(x^{2}\right)^{2}+8x^{2}+16}{x^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+4\right)^{2}.
25x^{2}=\frac{x^{4}+8x^{2}+16}{x^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
25x^{2}-\frac{x^{4}+8x^{2}+16}{x^{2}}=0
Subtract \frac{x^{4}+8x^{2}+16}{x^{2}} from both sides.
\frac{25x^{2}x^{2}}{x^{2}}-\frac{x^{4}+8x^{2}+16}{x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 25x^{2} times \frac{x^{2}}{x^{2}}.
\frac{25x^{2}x^{2}-\left(x^{4}+8x^{2}+16\right)}{x^{2}}=0
Since \frac{25x^{2}x^{2}}{x^{2}} and \frac{x^{4}+8x^{2}+16}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{25x^{4}-x^{4}-8x^{2}-16}{x^{2}}=0
Do the multiplications in 25x^{2}x^{2}-\left(x^{4}+8x^{2}+16\right).
\frac{24x^{4}-8x^{2}-16}{x^{2}}=0
Combine like terms in 25x^{4}-x^{4}-8x^{2}-16.
24x^{4}-8x^{2}-16=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
24t^{2}-8t-16=0
Substitute t for x^{2}.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 24\left(-16\right)}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 24 for a, -8 for b, and -16 for c in the quadratic formula.
t=\frac{8±40}{48}
Do the calculations.
t=1 t=-\frac{2}{3}
Solve the equation t=\frac{8±40}{48} when ± is plus and when ± is minus.
x=-1 x=1 x=-\frac{\sqrt{6}i}{3} x=\frac{\sqrt{6}i}{3}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(5x\right)^{2}=\left(x+\frac{4}{x}\right)^{2}
Combine 4x and x to get 5x.
5^{2}x^{2}=\left(x+\frac{4}{x}\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}=\left(x+\frac{4}{x}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}=\left(\frac{xx}{x}+\frac{4}{x}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
25x^{2}=\left(\frac{xx+4}{x}\right)^{2}
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, add them by adding their numerators.
25x^{2}=\left(\frac{x^{2}+4}{x}\right)^{2}
Do the multiplications in xx+4.
25x^{2}=\frac{\left(x^{2}+4\right)^{2}}{x^{2}}
To raise \frac{x^{2}+4}{x} to a power, raise both numerator and denominator to the power and then divide.
25x^{2}=\frac{\left(x^{2}\right)^{2}+8x^{2}+16}{x^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+4\right)^{2}.
25x^{2}=\frac{x^{4}+8x^{2}+16}{x^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
25x^{2}-\frac{x^{4}+8x^{2}+16}{x^{2}}=0
Subtract \frac{x^{4}+8x^{2}+16}{x^{2}} from both sides.
\frac{25x^{2}x^{2}}{x^{2}}-\frac{x^{4}+8x^{2}+16}{x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 25x^{2} times \frac{x^{2}}{x^{2}}.
\frac{25x^{2}x^{2}-\left(x^{4}+8x^{2}+16\right)}{x^{2}}=0
Since \frac{25x^{2}x^{2}}{x^{2}} and \frac{x^{4}+8x^{2}+16}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{25x^{4}-x^{4}-8x^{2}-16}{x^{2}}=0
Do the multiplications in 25x^{2}x^{2}-\left(x^{4}+8x^{2}+16\right).
\frac{24x^{4}-8x^{2}-16}{x^{2}}=0
Combine like terms in 25x^{4}-x^{4}-8x^{2}-16.
24x^{4}-8x^{2}-16=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
24t^{2}-8t-16=0
Substitute t for x^{2}.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 24\left(-16\right)}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 24 for a, -8 for b, and -16 for c in the quadratic formula.
t=\frac{8±40}{48}
Do the calculations.
t=1 t=-\frac{2}{3}
Solve the equation t=\frac{8±40}{48} when ± is plus and when ± is minus.
x=1 x=-1
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}