Solve for x
x=-6
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Graph
Share
Copied to clipboard
4x\left(4x-5\right)\left(x+7\right)+\left(4x-5\right)\left(x+7\right)\times 5=16x^{2}-25
Variable x cannot be equal to any of the values -7,\frac{5}{4} since division by zero is not defined. Multiply both sides of the equation by \left(4x-5\right)\left(x+7\right).
\left(16x^{2}-20x\right)\left(x+7\right)+\left(4x-5\right)\left(x+7\right)\times 5=16x^{2}-25
Use the distributive property to multiply 4x by 4x-5.
16x^{3}+92x^{2}-140x+\left(4x-5\right)\left(x+7\right)\times 5=16x^{2}-25
Use the distributive property to multiply 16x^{2}-20x by x+7 and combine like terms.
16x^{3}+92x^{2}-140x+\left(4x^{2}+23x-35\right)\times 5=16x^{2}-25
Use the distributive property to multiply 4x-5 by x+7 and combine like terms.
16x^{3}+92x^{2}-140x+20x^{2}+115x-175=16x^{2}-25
Use the distributive property to multiply 4x^{2}+23x-35 by 5.
16x^{3}+112x^{2}-140x+115x-175=16x^{2}-25
Combine 92x^{2} and 20x^{2} to get 112x^{2}.
16x^{3}+112x^{2}-25x-175=16x^{2}-25
Combine -140x and 115x to get -25x.
16x^{3}+112x^{2}-25x-175-16x^{2}=-25
Subtract 16x^{2} from both sides.
16x^{3}+96x^{2}-25x-175=-25
Combine 112x^{2} and -16x^{2} to get 96x^{2}.
16x^{3}+96x^{2}-25x-175+25=0
Add 25 to both sides.
16x^{3}+96x^{2}-25x-150=0
Add -175 and 25 to get -150.
±\frac{75}{8},±\frac{75}{4},±\frac{75}{2},±75,±150,±\frac{75}{16},±\frac{25}{8},±\frac{25}{4},±\frac{25}{2},±25,±50,±\frac{15}{8},±\frac{15}{4},±\frac{15}{2},±15,±30,±\frac{25}{16},±\frac{15}{16},±\frac{5}{8},±\frac{5}{4},±\frac{5}{2},±5,±10,±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±6,±\frac{5}{16},±\frac{3}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1,±2,±\frac{1}{16}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -150 and q divides the leading coefficient 16. List all candidates \frac{p}{q}.
x=-6
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
16x^{2}-25=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 16x^{3}+96x^{2}-25x-150 by x+6 to get 16x^{2}-25. Solve the equation where the result equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 16\left(-25\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 0 for b, and -25 for c in the quadratic formula.
x=\frac{0±40}{32}
Do the calculations.
x=-\frac{5}{4} x=\frac{5}{4}
Solve the equation 16x^{2}-25=0 when ± is plus and when ± is minus.
x=-\frac{5}{4}\text{ or }x=-6
Remove the values that the variable cannot be equal to.
x=-6 x=-\frac{5}{4} x=\frac{5}{4}
List all found solutions.
x=-\frac{5}{4} x=-6
Variable x cannot be equal to \frac{5}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}