Solve for x
x=-\frac{13}{28}\approx -0.464285714
x=-1
Graph
Share
Copied to clipboard
28x^{2}+41x+15=2
Use the distributive property to multiply 4x+3 by 7x+5 and combine like terms.
28x^{2}+41x+15-2=0
Subtract 2 from both sides.
28x^{2}+41x+13=0
Subtract 2 from 15 to get 13.
x=\frac{-41±\sqrt{41^{2}-4\times 28\times 13}}{2\times 28}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 28 for a, 41 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-41±\sqrt{1681-4\times 28\times 13}}{2\times 28}
Square 41.
x=\frac{-41±\sqrt{1681-112\times 13}}{2\times 28}
Multiply -4 times 28.
x=\frac{-41±\sqrt{1681-1456}}{2\times 28}
Multiply -112 times 13.
x=\frac{-41±\sqrt{225}}{2\times 28}
Add 1681 to -1456.
x=\frac{-41±15}{2\times 28}
Take the square root of 225.
x=\frac{-41±15}{56}
Multiply 2 times 28.
x=-\frac{26}{56}
Now solve the equation x=\frac{-41±15}{56} when ± is plus. Add -41 to 15.
x=-\frac{13}{28}
Reduce the fraction \frac{-26}{56} to lowest terms by extracting and canceling out 2.
x=-\frac{56}{56}
Now solve the equation x=\frac{-41±15}{56} when ± is minus. Subtract 15 from -41.
x=-1
Divide -56 by 56.
x=-\frac{13}{28} x=-1
The equation is now solved.
28x^{2}+41x+15=2
Use the distributive property to multiply 4x+3 by 7x+5 and combine like terms.
28x^{2}+41x=2-15
Subtract 15 from both sides.
28x^{2}+41x=-13
Subtract 15 from 2 to get -13.
\frac{28x^{2}+41x}{28}=-\frac{13}{28}
Divide both sides by 28.
x^{2}+\frac{41}{28}x=-\frac{13}{28}
Dividing by 28 undoes the multiplication by 28.
x^{2}+\frac{41}{28}x+\left(\frac{41}{56}\right)^{2}=-\frac{13}{28}+\left(\frac{41}{56}\right)^{2}
Divide \frac{41}{28}, the coefficient of the x term, by 2 to get \frac{41}{56}. Then add the square of \frac{41}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{41}{28}x+\frac{1681}{3136}=-\frac{13}{28}+\frac{1681}{3136}
Square \frac{41}{56} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{41}{28}x+\frac{1681}{3136}=\frac{225}{3136}
Add -\frac{13}{28} to \frac{1681}{3136} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{41}{56}\right)^{2}=\frac{225}{3136}
Factor x^{2}+\frac{41}{28}x+\frac{1681}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{41}{56}\right)^{2}}=\sqrt{\frac{225}{3136}}
Take the square root of both sides of the equation.
x+\frac{41}{56}=\frac{15}{56} x+\frac{41}{56}=-\frac{15}{56}
Simplify.
x=-\frac{13}{28} x=-1
Subtract \frac{41}{56} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}