Solve for x (complex solution)
x=-\frac{\sqrt{7}i}{2}-\frac{3}{4}\approx -0.75-1.322875656i
x=\frac{\sqrt{7}i}{2}-\frac{3}{4}\approx -0.75+1.322875656i
Graph
Share
Copied to clipboard
\left(4x+3\right)^{2}=-17-11
Subtracting 11 from itself leaves 0.
\left(4x+3\right)^{2}=-28
Subtract 11 from -17.
4x+3=2\sqrt{7}i 4x+3=-2\sqrt{7}i
Take the square root of both sides of the equation.
4x+3-3=2\sqrt{7}i-3 4x+3-3=-2\sqrt{7}i-3
Subtract 3 from both sides of the equation.
4x=2\sqrt{7}i-3 4x=-2\sqrt{7}i-3
Subtracting 3 from itself leaves 0.
4x=-3+2\sqrt{7}i
Subtract 3 from 2i\sqrt{7}.
4x=-2\sqrt{7}i-3
Subtract 3 from -2i\sqrt{7}.
\frac{4x}{4}=\frac{-3+2\sqrt{7}i}{4} \frac{4x}{4}=\frac{-2\sqrt{7}i-3}{4}
Divide both sides by 4.
x=\frac{-3+2\sqrt{7}i}{4} x=\frac{-2\sqrt{7}i-3}{4}
Dividing by 4 undoes the multiplication by 4.
x=\frac{\sqrt{7}i}{2}-\frac{3}{4}
Divide 2i\sqrt{7}-3 by 4.
x=-\frac{\sqrt{7}i}{2}-\frac{3}{4}
Divide -2i\sqrt{7}-3 by 4.
x=\frac{\sqrt{7}i}{2}-\frac{3}{4} x=-\frac{\sqrt{7}i}{2}-\frac{3}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}