Solve for x
x=\frac{\sqrt{185}-21}{8}\approx -0.924816186
x=\frac{-\sqrt{185}-21}{8}\approx -4.325183814
Graph
Share
Copied to clipboard
4x^{2}+22x+10=x-6
Use the distributive property to multiply 4x+2 by x+5 and combine like terms.
4x^{2}+22x+10-x=-6
Subtract x from both sides.
4x^{2}+21x+10=-6
Combine 22x and -x to get 21x.
4x^{2}+21x+10+6=0
Add 6 to both sides.
4x^{2}+21x+16=0
Add 10 and 6 to get 16.
x=\frac{-21±\sqrt{21^{2}-4\times 4\times 16}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 21 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\times 4\times 16}}{2\times 4}
Square 21.
x=\frac{-21±\sqrt{441-16\times 16}}{2\times 4}
Multiply -4 times 4.
x=\frac{-21±\sqrt{441-256}}{2\times 4}
Multiply -16 times 16.
x=\frac{-21±\sqrt{185}}{2\times 4}
Add 441 to -256.
x=\frac{-21±\sqrt{185}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{185}-21}{8}
Now solve the equation x=\frac{-21±\sqrt{185}}{8} when ± is plus. Add -21 to \sqrt{185}.
x=\frac{-\sqrt{185}-21}{8}
Now solve the equation x=\frac{-21±\sqrt{185}}{8} when ± is minus. Subtract \sqrt{185} from -21.
x=\frac{\sqrt{185}-21}{8} x=\frac{-\sqrt{185}-21}{8}
The equation is now solved.
4x^{2}+22x+10=x-6
Use the distributive property to multiply 4x+2 by x+5 and combine like terms.
4x^{2}+22x+10-x=-6
Subtract x from both sides.
4x^{2}+21x+10=-6
Combine 22x and -x to get 21x.
4x^{2}+21x=-6-10
Subtract 10 from both sides.
4x^{2}+21x=-16
Subtract 10 from -6 to get -16.
\frac{4x^{2}+21x}{4}=-\frac{16}{4}
Divide both sides by 4.
x^{2}+\frac{21}{4}x=-\frac{16}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{21}{4}x=-4
Divide -16 by 4.
x^{2}+\frac{21}{4}x+\left(\frac{21}{8}\right)^{2}=-4+\left(\frac{21}{8}\right)^{2}
Divide \frac{21}{4}, the coefficient of the x term, by 2 to get \frac{21}{8}. Then add the square of \frac{21}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{21}{4}x+\frac{441}{64}=-4+\frac{441}{64}
Square \frac{21}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{21}{4}x+\frac{441}{64}=\frac{185}{64}
Add -4 to \frac{441}{64}.
\left(x+\frac{21}{8}\right)^{2}=\frac{185}{64}
Factor x^{2}+\frac{21}{4}x+\frac{441}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{21}{8}\right)^{2}}=\sqrt{\frac{185}{64}}
Take the square root of both sides of the equation.
x+\frac{21}{8}=\frac{\sqrt{185}}{8} x+\frac{21}{8}=-\frac{\sqrt{185}}{8}
Simplify.
x=\frac{\sqrt{185}-21}{8} x=\frac{-\sqrt{185}-21}{8}
Subtract \frac{21}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}