Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-16x^{2}-4x-4x-1-\left(2x-3\right)\left(2x+3\right)
Apply the distributive property by multiplying each term of 4x+1 by each term of -4x-1.
-16x^{2}-8x-1-\left(2x-3\right)\left(2x+3\right)
Combine -4x and -4x to get -8x.
-16x^{2}-8x-1-\left(\left(2x\right)^{2}-3^{2}\right)
Consider \left(2x-3\right)\left(2x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-16x^{2}-8x-1-\left(2^{2}x^{2}-3^{2}\right)
Expand \left(2x\right)^{2}.
-16x^{2}-8x-1-\left(4x^{2}-3^{2}\right)
Calculate 2 to the power of 2 and get 4.
-16x^{2}-8x-1-\left(4x^{2}-9\right)
Calculate 3 to the power of 2 and get 9.
-16x^{2}-8x-1-4x^{2}-\left(-9\right)
To find the opposite of 4x^{2}-9, find the opposite of each term.
-16x^{2}-8x-1-4x^{2}+9
The opposite of -9 is 9.
-20x^{2}-8x-1+9
Combine -16x^{2} and -4x^{2} to get -20x^{2}.
-20x^{2}-8x+8
Add -1 and 9 to get 8.
-16x^{2}-4x-4x-1-\left(2x-3\right)\left(2x+3\right)
Apply the distributive property by multiplying each term of 4x+1 by each term of -4x-1.
-16x^{2}-8x-1-\left(2x-3\right)\left(2x+3\right)
Combine -4x and -4x to get -8x.
-16x^{2}-8x-1-\left(\left(2x\right)^{2}-3^{2}\right)
Consider \left(2x-3\right)\left(2x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-16x^{2}-8x-1-\left(2^{2}x^{2}-3^{2}\right)
Expand \left(2x\right)^{2}.
-16x^{2}-8x-1-\left(4x^{2}-3^{2}\right)
Calculate 2 to the power of 2 and get 4.
-16x^{2}-8x-1-\left(4x^{2}-9\right)
Calculate 3 to the power of 2 and get 9.
-16x^{2}-8x-1-4x^{2}-\left(-9\right)
To find the opposite of 4x^{2}-9, find the opposite of each term.
-16x^{2}-8x-1-4x^{2}+9
The opposite of -9 is 9.
-20x^{2}-8x-1+9
Combine -16x^{2} and -4x^{2} to get -20x^{2}.
-20x^{2}-8x+8
Add -1 and 9 to get 8.