Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+8x+1=8x+18
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+1\right)^{2}.
16x^{2}+8x+1-8x=18
Subtract 8x from both sides.
16x^{2}+1=18
Combine 8x and -8x to get 0.
16x^{2}=18-1
Subtract 1 from both sides.
16x^{2}=17
Subtract 1 from 18 to get 17.
x^{2}=\frac{17}{16}
Divide both sides by 16.
x=\frac{\sqrt{17}}{4} x=-\frac{\sqrt{17}}{4}
Take the square root of both sides of the equation.
16x^{2}+8x+1=8x+18
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+1\right)^{2}.
16x^{2}+8x+1-8x=18
Subtract 8x from both sides.
16x^{2}+1=18
Combine 8x and -8x to get 0.
16x^{2}+1-18=0
Subtract 18 from both sides.
16x^{2}-17=0
Subtract 18 from 1 to get -17.
x=\frac{0±\sqrt{0^{2}-4\times 16\left(-17\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 0 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 16\left(-17\right)}}{2\times 16}
Square 0.
x=\frac{0±\sqrt{-64\left(-17\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{0±\sqrt{1088}}{2\times 16}
Multiply -64 times -17.
x=\frac{0±8\sqrt{17}}{2\times 16}
Take the square root of 1088.
x=\frac{0±8\sqrt{17}}{32}
Multiply 2 times 16.
x=\frac{\sqrt{17}}{4}
Now solve the equation x=\frac{0±8\sqrt{17}}{32} when ± is plus.
x=-\frac{\sqrt{17}}{4}
Now solve the equation x=\frac{0±8\sqrt{17}}{32} when ± is minus.
x=\frac{\sqrt{17}}{4} x=-\frac{\sqrt{17}}{4}
The equation is now solved.