Evaluate
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{14p}
Expand
4p^{3}+5p^{2}-\frac{10p}{7}-\frac{5}{14}+\frac{25}{14p}
Share
Copied to clipboard
\left(4p^{2}+\frac{10}{7p}-\frac{10p}{7p}\right)\left(p+\frac{5}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7p and 7 is 7p. Multiply \frac{10}{7} times \frac{p}{p}.
\left(4p^{2}+\frac{10-10p}{7p}\right)\left(p+\frac{5}{4}\right)
Since \frac{10}{7p} and \frac{10p}{7p} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{4p^{2}\times 7p}{7p}+\frac{10-10p}{7p}\right)\left(p+\frac{5}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4p^{2} times \frac{7p}{7p}.
\frac{4p^{2}\times 7p+10-10p}{7p}\left(p+\frac{5}{4}\right)
Since \frac{4p^{2}\times 7p}{7p} and \frac{10-10p}{7p} have the same denominator, add them by adding their numerators.
\frac{28p^{3}+10-10p}{7p}\left(p+\frac{5}{4}\right)
Do the multiplications in 4p^{2}\times 7p+10-10p.
\frac{28p^{3}+10-10p}{7p}p+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Use the distributive property to multiply \frac{28p^{3}+10-10p}{7p} by p+\frac{5}{4}.
\frac{\left(28p^{3}+10-10p\right)p}{7p}+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Express \frac{28p^{3}+10-10p}{7p}p as a single fraction.
\frac{28p^{3}-10p+10}{7}+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Cancel out p in both numerator and denominator.
\frac{28p^{3}-10p+10}{7}+\frac{5\left(28p^{3}+10-10p\right)}{4\times 7p}
Multiply \frac{5}{4} times \frac{28p^{3}+10-10p}{7p} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(28p^{3}-10p+10\right)\times 4p}{4\times 7p}+\frac{5\left(28p^{3}+10-10p\right)}{4\times 7p}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 4\times 7p is 4\times 7p. Multiply \frac{28p^{3}-10p+10}{7} times \frac{4p}{4p}.
\frac{\left(28p^{3}-10p+10\right)\times 4p+5\left(28p^{3}+10-10p\right)}{4\times 7p}
Since \frac{\left(28p^{3}-10p+10\right)\times 4p}{4\times 7p} and \frac{5\left(28p^{3}+10-10p\right)}{4\times 7p} have the same denominator, add them by adding their numerators.
\frac{112p^{4}-40p^{2}+40p+140p^{3}+50-50p}{4\times 7p}
Do the multiplications in \left(28p^{3}-10p+10\right)\times 4p+5\left(28p^{3}+10-10p\right).
\frac{112p^{4}-40p^{2}-10p+140p^{3}+50}{4\times 7p}
Combine like terms in 112p^{4}-40p^{2}+40p+140p^{3}+50-50p.
\frac{2\left(4p+5\right)\left(14p^{3}-5p+5\right)}{4\times 7p}
Factor the expressions that are not already factored in \frac{112p^{4}-40p^{2}-10p+140p^{3}+50}{4\times 7p}.
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{2\times 7p}
Cancel out 2 in both numerator and denominator.
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{14p}
Expand 2\times 7p.
\frac{56p^{4}-20p^{2}-5p+70p^{3}+25}{14p}
Use the distributive property to multiply 4p+5 by 14p^{3}-5p+5 and combine like terms.
\left(4p^{2}+\frac{10}{7p}-\frac{10p}{7p}\right)\left(p+\frac{5}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7p and 7 is 7p. Multiply \frac{10}{7} times \frac{p}{p}.
\left(4p^{2}+\frac{10-10p}{7p}\right)\left(p+\frac{5}{4}\right)
Since \frac{10}{7p} and \frac{10p}{7p} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{4p^{2}\times 7p}{7p}+\frac{10-10p}{7p}\right)\left(p+\frac{5}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4p^{2} times \frac{7p}{7p}.
\frac{4p^{2}\times 7p+10-10p}{7p}\left(p+\frac{5}{4}\right)
Since \frac{4p^{2}\times 7p}{7p} and \frac{10-10p}{7p} have the same denominator, add them by adding their numerators.
\frac{28p^{3}+10-10p}{7p}\left(p+\frac{5}{4}\right)
Do the multiplications in 4p^{2}\times 7p+10-10p.
\frac{28p^{3}+10-10p}{7p}p+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Use the distributive property to multiply \frac{28p^{3}+10-10p}{7p} by p+\frac{5}{4}.
\frac{\left(28p^{3}+10-10p\right)p}{7p}+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Express \frac{28p^{3}+10-10p}{7p}p as a single fraction.
\frac{28p^{3}-10p+10}{7}+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Cancel out p in both numerator and denominator.
\frac{28p^{3}-10p+10}{7}+\frac{5\left(28p^{3}+10-10p\right)}{4\times 7p}
Multiply \frac{5}{4} times \frac{28p^{3}+10-10p}{7p} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(28p^{3}-10p+10\right)\times 4p}{4\times 7p}+\frac{5\left(28p^{3}+10-10p\right)}{4\times 7p}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 4\times 7p is 4\times 7p. Multiply \frac{28p^{3}-10p+10}{7} times \frac{4p}{4p}.
\frac{\left(28p^{3}-10p+10\right)\times 4p+5\left(28p^{3}+10-10p\right)}{4\times 7p}
Since \frac{\left(28p^{3}-10p+10\right)\times 4p}{4\times 7p} and \frac{5\left(28p^{3}+10-10p\right)}{4\times 7p} have the same denominator, add them by adding their numerators.
\frac{112p^{4}-40p^{2}+40p+140p^{3}+50-50p}{4\times 7p}
Do the multiplications in \left(28p^{3}-10p+10\right)\times 4p+5\left(28p^{3}+10-10p\right).
\frac{112p^{4}-40p^{2}-10p+140p^{3}+50}{4\times 7p}
Combine like terms in 112p^{4}-40p^{2}+40p+140p^{3}+50-50p.
\frac{2\left(4p+5\right)\left(14p^{3}-5p+5\right)}{4\times 7p}
Factor the expressions that are not already factored in \frac{112p^{4}-40p^{2}-10p+140p^{3}+50}{4\times 7p}.
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{2\times 7p}
Cancel out 2 in both numerator and denominator.
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{14p}
Expand 2\times 7p.
\frac{56p^{4}-20p^{2}-5p+70p^{3}+25}{14p}
Use the distributive property to multiply 4p+5 by 14p^{3}-5p+5 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}