Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(4p^{2}+\frac{10}{7p}-\frac{10p}{7p}\right)\left(p+\frac{5}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7p and 7 is 7p. Multiply \frac{10}{7} times \frac{p}{p}.
\left(4p^{2}+\frac{10-10p}{7p}\right)\left(p+\frac{5}{4}\right)
Since \frac{10}{7p} and \frac{10p}{7p} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{4p^{2}\times 7p}{7p}+\frac{10-10p}{7p}\right)\left(p+\frac{5}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4p^{2} times \frac{7p}{7p}.
\frac{4p^{2}\times 7p+10-10p}{7p}\left(p+\frac{5}{4}\right)
Since \frac{4p^{2}\times 7p}{7p} and \frac{10-10p}{7p} have the same denominator, add them by adding their numerators.
\frac{28p^{3}+10-10p}{7p}\left(p+\frac{5}{4}\right)
Do the multiplications in 4p^{2}\times 7p+10-10p.
\frac{28p^{3}+10-10p}{7p}p+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Use the distributive property to multiply \frac{28p^{3}+10-10p}{7p} by p+\frac{5}{4}.
\frac{\left(28p^{3}+10-10p\right)p}{7p}+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Express \frac{28p^{3}+10-10p}{7p}p as a single fraction.
\frac{28p^{3}-10p+10}{7}+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Cancel out p in both numerator and denominator.
\frac{28p^{3}-10p+10}{7}+\frac{5\left(28p^{3}+10-10p\right)}{4\times 7p}
Multiply \frac{5}{4} times \frac{28p^{3}+10-10p}{7p} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(28p^{3}-10p+10\right)\times 4p}{4\times 7p}+\frac{5\left(28p^{3}+10-10p\right)}{4\times 7p}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 4\times 7p is 4\times 7p. Multiply \frac{28p^{3}-10p+10}{7} times \frac{4p}{4p}.
\frac{\left(28p^{3}-10p+10\right)\times 4p+5\left(28p^{3}+10-10p\right)}{4\times 7p}
Since \frac{\left(28p^{3}-10p+10\right)\times 4p}{4\times 7p} and \frac{5\left(28p^{3}+10-10p\right)}{4\times 7p} have the same denominator, add them by adding their numerators.
\frac{112p^{4}-40p^{2}+40p+140p^{3}+50-50p}{4\times 7p}
Do the multiplications in \left(28p^{3}-10p+10\right)\times 4p+5\left(28p^{3}+10-10p\right).
\frac{112p^{4}-40p^{2}-10p+140p^{3}+50}{4\times 7p}
Combine like terms in 112p^{4}-40p^{2}+40p+140p^{3}+50-50p.
\frac{2\left(4p+5\right)\left(14p^{3}-5p+5\right)}{4\times 7p}
Factor the expressions that are not already factored in \frac{112p^{4}-40p^{2}-10p+140p^{3}+50}{4\times 7p}.
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{2\times 7p}
Cancel out 2 in both numerator and denominator.
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{14p}
Expand 2\times 7p.
\frac{56p^{4}-20p^{2}-5p+70p^{3}+25}{14p}
Use the distributive property to multiply 4p+5 by 14p^{3}-5p+5 and combine like terms.
\left(4p^{2}+\frac{10}{7p}-\frac{10p}{7p}\right)\left(p+\frac{5}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7p and 7 is 7p. Multiply \frac{10}{7} times \frac{p}{p}.
\left(4p^{2}+\frac{10-10p}{7p}\right)\left(p+\frac{5}{4}\right)
Since \frac{10}{7p} and \frac{10p}{7p} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{4p^{2}\times 7p}{7p}+\frac{10-10p}{7p}\right)\left(p+\frac{5}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4p^{2} times \frac{7p}{7p}.
\frac{4p^{2}\times 7p+10-10p}{7p}\left(p+\frac{5}{4}\right)
Since \frac{4p^{2}\times 7p}{7p} and \frac{10-10p}{7p} have the same denominator, add them by adding their numerators.
\frac{28p^{3}+10-10p}{7p}\left(p+\frac{5}{4}\right)
Do the multiplications in 4p^{2}\times 7p+10-10p.
\frac{28p^{3}+10-10p}{7p}p+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Use the distributive property to multiply \frac{28p^{3}+10-10p}{7p} by p+\frac{5}{4}.
\frac{\left(28p^{3}+10-10p\right)p}{7p}+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Express \frac{28p^{3}+10-10p}{7p}p as a single fraction.
\frac{28p^{3}-10p+10}{7}+\frac{5}{4}\times \frac{28p^{3}+10-10p}{7p}
Cancel out p in both numerator and denominator.
\frac{28p^{3}-10p+10}{7}+\frac{5\left(28p^{3}+10-10p\right)}{4\times 7p}
Multiply \frac{5}{4} times \frac{28p^{3}+10-10p}{7p} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(28p^{3}-10p+10\right)\times 4p}{4\times 7p}+\frac{5\left(28p^{3}+10-10p\right)}{4\times 7p}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 4\times 7p is 4\times 7p. Multiply \frac{28p^{3}-10p+10}{7} times \frac{4p}{4p}.
\frac{\left(28p^{3}-10p+10\right)\times 4p+5\left(28p^{3}+10-10p\right)}{4\times 7p}
Since \frac{\left(28p^{3}-10p+10\right)\times 4p}{4\times 7p} and \frac{5\left(28p^{3}+10-10p\right)}{4\times 7p} have the same denominator, add them by adding their numerators.
\frac{112p^{4}-40p^{2}+40p+140p^{3}+50-50p}{4\times 7p}
Do the multiplications in \left(28p^{3}-10p+10\right)\times 4p+5\left(28p^{3}+10-10p\right).
\frac{112p^{4}-40p^{2}-10p+140p^{3}+50}{4\times 7p}
Combine like terms in 112p^{4}-40p^{2}+40p+140p^{3}+50-50p.
\frac{2\left(4p+5\right)\left(14p^{3}-5p+5\right)}{4\times 7p}
Factor the expressions that are not already factored in \frac{112p^{4}-40p^{2}-10p+140p^{3}+50}{4\times 7p}.
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{2\times 7p}
Cancel out 2 in both numerator and denominator.
\frac{\left(4p+5\right)\left(14p^{3}-5p+5\right)}{14p}
Expand 2\times 7p.
\frac{56p^{4}-20p^{2}-5p+70p^{3}+25}{14p}
Use the distributive property to multiply 4p+5 by 14p^{3}-5p+5 and combine like terms.