Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(4p\right)^{2}-q^{2}-\left(3p-q\right)^{2}
Consider \left(4p+q\right)\left(4p-q\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}p^{2}-q^{2}-\left(3p-q\right)^{2}
Expand \left(4p\right)^{2}.
16p^{2}-q^{2}-\left(3p-q\right)^{2}
Calculate 4 to the power of 2 and get 16.
16p^{2}-q^{2}-\left(9p^{2}-6pq+q^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3p-q\right)^{2}.
16p^{2}-q^{2}-9p^{2}+6pq-q^{2}
To find the opposite of 9p^{2}-6pq+q^{2}, find the opposite of each term.
7p^{2}-q^{2}+6pq-q^{2}
Combine 16p^{2} and -9p^{2} to get 7p^{2}.
7p^{2}-2q^{2}+6pq
Combine -q^{2} and -q^{2} to get -2q^{2}.
\left(4p\right)^{2}-q^{2}-\left(3p-q\right)^{2}
Consider \left(4p+q\right)\left(4p-q\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4^{2}p^{2}-q^{2}-\left(3p-q\right)^{2}
Expand \left(4p\right)^{2}.
16p^{2}-q^{2}-\left(3p-q\right)^{2}
Calculate 4 to the power of 2 and get 16.
16p^{2}-q^{2}-\left(9p^{2}-6pq+q^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3p-q\right)^{2}.
16p^{2}-q^{2}-9p^{2}+6pq-q^{2}
To find the opposite of 9p^{2}-6pq+q^{2}, find the opposite of each term.
7p^{2}-q^{2}+6pq-q^{2}
Combine 16p^{2} and -9p^{2} to get 7p^{2}.
7p^{2}-2q^{2}+6pq
Combine -q^{2} and -q^{2} to get -2q^{2}.