Factor
\left(2n-1\right)\left(2n+3\right)
Evaluate
\left(2n-1\right)\left(2n+3\right)
Share
Copied to clipboard
a+b=4 ab=4\left(-3\right)=-12
Factor the expression by grouping. First, the expression needs to be rewritten as 4n^{2}+an+bn-3. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-2 b=6
The solution is the pair that gives sum 4.
\left(4n^{2}-2n\right)+\left(6n-3\right)
Rewrite 4n^{2}+4n-3 as \left(4n^{2}-2n\right)+\left(6n-3\right).
2n\left(2n-1\right)+3\left(2n-1\right)
Factor out 2n in the first and 3 in the second group.
\left(2n-1\right)\left(2n+3\right)
Factor out common term 2n-1 by using distributive property.
4n^{2}+4n-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-4±\sqrt{4^{2}-4\times 4\left(-3\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-4±\sqrt{16-4\times 4\left(-3\right)}}{2\times 4}
Square 4.
n=\frac{-4±\sqrt{16-16\left(-3\right)}}{2\times 4}
Multiply -4 times 4.
n=\frac{-4±\sqrt{16+48}}{2\times 4}
Multiply -16 times -3.
n=\frac{-4±\sqrt{64}}{2\times 4}
Add 16 to 48.
n=\frac{-4±8}{2\times 4}
Take the square root of 64.
n=\frac{-4±8}{8}
Multiply 2 times 4.
n=\frac{4}{8}
Now solve the equation n=\frac{-4±8}{8} when ± is plus. Add -4 to 8.
n=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
n=-\frac{12}{8}
Now solve the equation n=\frac{-4±8}{8} when ± is minus. Subtract 8 from -4.
n=-\frac{3}{2}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
4n^{2}+4n-3=4\left(n-\frac{1}{2}\right)\left(n-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2} for x_{1} and -\frac{3}{2} for x_{2}.
4n^{2}+4n-3=4\left(n-\frac{1}{2}\right)\left(n+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4n^{2}+4n-3=4\times \frac{2n-1}{2}\left(n+\frac{3}{2}\right)
Subtract \frac{1}{2} from n by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4n^{2}+4n-3=4\times \frac{2n-1}{2}\times \frac{2n+3}{2}
Add \frac{3}{2} to n by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4n^{2}+4n-3=4\times \frac{\left(2n-1\right)\left(2n+3\right)}{2\times 2}
Multiply \frac{2n-1}{2} times \frac{2n+3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
4n^{2}+4n-3=4\times \frac{\left(2n-1\right)\left(2n+3\right)}{4}
Multiply 2 times 2.
4n^{2}+4n-3=\left(2n-1\right)\left(2n+3\right)
Cancel out 4, the greatest common factor in 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}