Solve for m
m\in \left(-\sqrt{3},\sqrt{3}\right)
Share
Copied to clipboard
4^{2}m^{2}-3\times 4\left(2m^{2}-2\right)>0
Expand \left(4m\right)^{2}.
16m^{2}-3\times 4\left(2m^{2}-2\right)>0
Calculate 4 to the power of 2 and get 16.
16m^{2}-12\left(2m^{2}-2\right)>0
Multiply 3 and 4 to get 12.
16m^{2}-24m^{2}+24>0
Use the distributive property to multiply -12 by 2m^{2}-2.
-8m^{2}+24>0
Combine 16m^{2} and -24m^{2} to get -8m^{2}.
8m^{2}-24<0
Multiply the inequality by -1 to make the coefficient of the highest power in -8m^{2}+24 positive. Since -1 is negative, the inequality direction is changed.
m^{2}<3
Add 3 to both sides.
m^{2}<\left(\sqrt{3}\right)^{2}
Calculate the square root of 3 and get \sqrt{3}. Rewrite 3 as \left(\sqrt{3}\right)^{2}.
|m|<\sqrt{3}
Inequality holds for |m|<\sqrt{3}.
m\in \left(-\sqrt{3},\sqrt{3}\right)
Rewrite |m|<\sqrt{3} as m\in \left(-\sqrt{3},\sqrt{3}\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}